日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 11、若{an}滿足a1=0,an+1=an+2n則a2006=( 。
          分析:由題意可得an+1-an=2n,從而考慮利用疊加法求解數(shù)列的通項(xiàng),然后把n=2006代入即可求解
          解答:解:由題意可得,得an+1-an=2n
          所以a2-a1=2
             a3-a2=4

             an-an-1=2(n-1)
          把以上n-1個(gè)式子相加可得,an-a1=2+4+6+…+2(n-1)=n(n-1)
          所以,an=n(n-1)
          則a2006=2006×2005
          故選D.
          點(diǎn)評(píng):本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的通項(xiàng)公式,解題的關(guān)鍵是靈活利用疊加法,疊加使要注意所寫出的式子得個(gè)數(shù)是n-1個(gè),而不是n個(gè).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•浙江模擬)數(shù)列{an}滿足an+1+an=4n-3(n∈N*
          (Ⅰ)若{an}是等差數(shù)列,求其通項(xiàng)公式;
          (Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對(duì)于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對(duì)任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
          (1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009;
          (2)若{an}滿足a1=p∈[0, 
          1
          2
          )
          ,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
          (3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中bn=an+2n+
          2009
          2n
          ,問是否存在最小的自然數(shù)n(n∈N*),使得對(duì)一切自然數(shù)m≥n,都有bm>2009?請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湘潭三模)若{an}滿足a1=1,an+an+1=(
          14
          )n
          (n∈N*),設(shè)Sn=a1+4a2+42a3+…+4n-1an5S2-42a2=
          2
          2
          ;類比課本中推導(dǎo)等比數(shù)列前n項(xiàng)和公式的方法,可求得5Sn-4nan=
          n
          n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          對(duì)于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對(duì)任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
          (1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009;
          (2)若{an}滿足a1=p∈[0, 
          1
          2
          )
          ,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
          (3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中bn=an+2n+
          2009
          2n
          ,問是否存在最小的自然數(shù)n(n∈N*),使得對(duì)一切自然數(shù)m≥n,都有bm>2009?請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案