(本題滿分12分)已知函數(shù),
其中(且
⑴求函數(shù)的定義域;
⑵判斷函數(shù)的奇偶性,并予以證明;
⑶判斷它在區(qū)間(0,1)上的單調(diào)性并說明理由。
⑴ ;⑵
⑶區(qū)間(0,1)上為單調(diào)遞增函數(shù)。
【解析】(1)函數(shù)f(x)+g(x)的定義域應(yīng)該是f(x),g(x)定義域的交集即,
,所以,即所求函數(shù)的定義域?yàn)?-1,1).
(2)由(1)知其定義域關(guān)于原點(diǎn)對稱,并且根據(jù)對數(shù)的運(yùn)算性質(zhì)可得,
然后再根據(jù)奇偶函數(shù)的定義判斷出H(-x)=-H(x),從而可知為奇函數(shù)。
(3)利用單調(diào)性的定義第一步取值:任取且
;
第二步:作差變形判斷的符號,再判斷時要利用對數(shù)函數(shù)的性質(zhì),
第三步:得出結(jié)論。
⑴ 由題意得:
所以所求定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121811131224857868/SYS201212181114074516287060_DA.files/image001.png">
⑵ 令
則
⑶,
任取且
,則
,
則
,
,
在區(qū)間(0,1)上為單調(diào)遞增函數(shù)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題
(本題滿分12分)已知△的三個內(nèi)角
、
、
所對的邊分別為
、
、
.
,且
.(1)求
的大;(2)若
.求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若
的前n項和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題
(本題滿分12分)
已知橢圓:
的長軸長是短軸長的
倍,
,
是它的左,右焦點(diǎn).
(1)若,且
,
,求
、
的坐標(biāo);
(2)在(1)的條件下,過動點(diǎn)作以
為圓心、以1為半徑的圓的切線
(
是切點(diǎn)),且使
,求動點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知橢圓的長軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量
與
是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求
的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com