日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,∠A=60°,c= a.(13分)
          (1)求sinC的值;
          (2)若a=7,求△ABC的面積.

          【答案】
          (1)

          解:∠A=60°,c= a,

          由正弦定理可得sinC= sinA= × = ,


          (2)

          解:a=7,則c=3,

          ∴C<A,

          由(1)可得cosC=

          ∴sinB=sin(A+C)=sinAcosC+cosAsinC= × + × = ,

          ∴SABC= acsinB= ×7×3× =6


          【解析】(1.)根據(jù)正弦定理即可求出答案,
          (2.)根據(jù)同角的三角函數(shù)的關(guān)系求出cosC,再根據(jù)兩角和正弦公式求出sinB,根據(jù)面積公式計算即可.
          【考點精析】根據(jù)題目的已知條件,利用兩角和與差的正弦公式和正弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握兩角和與差的正弦公式:;正弦定理:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線.

          1)若,求實數(shù)的值;

          2)若,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于給定的正整數(shù)k,若數(shù)列{an}滿足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan對任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”.
          (Ⅰ)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
          (Ⅱ)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在同一個平面內(nèi),向量 , , 的模分別為1,1, 的夾角為α,且tanα=7, 的夾角為45°.若 =m +n (m,n∈R),則m+n=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
          (Ⅰ)求f( )的值.
          (Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進行統(tǒng)計,按 分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在的數(shù)據(jù)).

          (1)求樣本容量和頻率分布直方圖中的

          (2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機抽取3株,設(shè)隨機變量表示所抽取的3株高度在 內(nèi)的株數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .

          (1)當(dāng)時,討論的單調(diào)性;

          (2)設(shè),當(dāng)時,若對任意,存在使,求實數(shù)取值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,多面體 兩兩垂直, , ,

          .

          () 若點在線段,求證: 平面

          ()求直線與平面所成的角的正弦值;

          ()求銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正△ABC內(nèi)接于半徑為2的圓O,點P是圓O上的一個動點,則 的取值范圍是(
          A.[0,6]
          B.[﹣2,6]
          C.[0,2]
          D.[﹣2,2]

          查看答案和解析>>

          同步練習(xí)冊答案