日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖所示,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點,PA=AD=a.
          (1)求證:MN∥平面PAD;
          (2)求證:平面PMC⊥平面PCD.
          分析:(1)欲證MN∥平面PAD,根據(jù)直線與平面平行的判定定理可知只需證MN與平面PAD內(nèi)一直線平行即可,設(shè)PD的中點為E,連接AE、NE,易證AMNE是平行四邊形,則MN∥AE,而AE?平面PAD,NM?平面PAD,滿足定理所需條件;
          (2)欲證平面PMC⊥平面PCD,根據(jù)面面垂直的判定定理可知在平面PMC內(nèi)一直線與平面PCD垂直,而AE⊥PD,CD⊥AE,PD∩CD=D,根據(jù)線面垂直的判定定理可知AE⊥平面PCD,而MN∥AE,則MN⊥平面PCD,又MN?平面PMC,滿足定理所需條件.
          解答:精英家教網(wǎng)證明:(1)設(shè)PD的中點為E,連接AE、NE,
          由N為PC的中點知EN
          .
          1
          2
          DC,
          又ABCD是矩形,∴DC
          .
          AB,∴EN
          .
          1
          2
          AB
          又M是AB的中點,∴EN
          .
          AM,
          ∴AMNE是平行四邊形
          ∴MN∥AE,而AE?平面PAD,NM?平面PAD
          ∴MN∥平面PAD
          證明:(2)∵PA=AD,∴AE⊥PD,
          又∵PA⊥平面ABCD,CD?平面ABCD,
          ∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD
          ∴CD⊥AE,∵PD∩CD=D,∴AE⊥平面PCD,
          ∵M(jìn)N∥AE,∴MN⊥平面PCD,
          又MN?平面PMC,
          ∴平面PMC⊥平面PCD.
          點評:本題主要考查平面與平面垂直的判定,以及線面平行的判定,同時考查了空間想象能力和推理能力,以及轉(zhuǎn)化與劃歸的思想,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點.
          (Ⅰ)求證:平面PDE⊥平面PAC;
          (Ⅱ)求二面角C-PD-E的大。
          (Ⅲ)求點B到平面PDE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面是一個矩形,AB=3.AD=1.又PA⊥AB,PA=4,
          ∠PAD=60°.求:
          (1)四棱錐P-ABCD的體積.
          (2)二面角P-BC-D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面ABCD是半徑為R的圓的內(nèi)接四邊形,其中BD是圓的直徑,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
          (1)求線段PD的長;
          (2)若PC=
          11
          R
          ,求三棱錐P-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•煙臺一模)如圖所示,四棱錐P-ABCD中,ABCD為正方形,PA⊥AD,E,F(xiàn),G分別是線段PA,PD,CD的中點.
          求證:
          (1)BC∥平面EFG;
          (2)平面EFG⊥平面PAB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,四棱錐P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E為PC的中點,PA=AD=AB=1.
          (1)證明:EB∥平面PAD;
          (2)證明:BE⊥平面PDC;
          (3)求三棱錐B-PDC的體積V.

          查看答案和解析>>

          同步練習(xí)冊答案