日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一次圍棋擂臺賽,由一位職業(yè)圍棋高手設(shè)擂做擂主,甲、乙、丙三位業(yè)余圍棋高手攻擂.如果某一業(yè)余棋手獲勝,或者擂主戰(zhàn)勝全部業(yè)余棋手,則比賽結(jié)束.已知甲、乙、丙三人戰(zhàn)勝擂主的概率分別為p1,p2,p3,每人能否戰(zhàn)勝擂主是相互獨(dú)立的.
          (1)求這次擂主能成功守擂(即戰(zhàn)勝三位攻擂者)的概率;
          (2)若按甲、乙、丙順序攻擂,這次擂臺賽共進(jìn)行了x次比賽,求x得數(shù)學(xué)期望;
          (3)假定p3<p2<p1<1,試分析以怎樣的先后順序出場,可使所需出場人員數(shù)的均值(數(shù)學(xué)期望)達(dá)到最小,并證明你的結(jié)論.
          解:(1)設(shè)擂主能成功守擂的事件為A,三人攻擂獲勝的事件為Bi,i=1,2,3,
          則P(Bi)=pi,
          三人攻擂均失敗的概率為(1﹣p1)(1﹣p2)(1﹣p3).
          所以,擂主守擂成功的概率是P(A)=(1﹣p1)(1﹣p2)(1﹣p3
          (2)比賽場數(shù)X=1,2,3.
          X=1,比賽一場結(jié)束,則第一位業(yè)余棋手就獲勝,其概率為P(X=1)=p1
          X=2,比賽二場結(jié)束,則第一位業(yè)余棋手攻擂失敗,第二位勝利,其概率是P(X=2)
          =(1﹣p1) p2;
          X=3,比賽三場結(jié)束,則第一,二位業(yè)余棋手攻擂失敗,其概率為
          P(X=3)=(1﹣p1)(1﹣p2),
          E(X)=p1+2(1﹣p1) p2+3(1﹣p1)(1﹣p2)=3﹣2p1﹣p2+p1p2
          (3)答按獲勝概率從大到小的順序出場,則所需出場人員數(shù)的均值為最小
          下面證明以上結(jié)論.
          設(shè)q1,q2,q3是p1,p2,p3的一個排列,如果按q1,q2,q3有順序出場,
          由(2)可得期望 E(X)=3﹣2q1﹣q2+q1q2
          因?yàn)椤?(3﹣2q1﹣q2+q1q2)﹣(3﹣2p1﹣p2+p1p2)=2(p1﹣q1)+(p2﹣q2)+q1q2﹣p1p2
          =2(p1﹣q1)+(p2﹣q2)﹣(p1﹣q1)p2﹣(p2﹣q2)q1=(2﹣p2) (p1﹣q1)+
          (p2﹣q2)(1﹣q1)≥(1﹣q1)( p1﹣q1)+(p2﹣q2)(1﹣q1
          =(1﹣q1)[(p1+p2)﹣(q1+q2)]≥0.等號成立當(dāng)且僅當(dāng)q1=p1,q2=p2
          所以,按獲勝概率從大到小的順序出場,所需出場人員數(shù)的均值為最小.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          為豐富中學(xué)生的課余生活,增進(jìn)中學(xué)生之間的交往與學(xué)習(xí),某市甲乙兩所中學(xué)舉辦一次中學(xué)生圍棋擂臺賽.比賽規(guī)則如下,雙方各出3名隊(duì)員并預(yù)先排定好出場順序,雙方的第一號選手首先對壘,雙方的勝者留下進(jìn)行下一局比賽,負(fù)者被淘汰出局,由第二號選手挑戰(zhàn)上一局獲勝的選手,依此類推,直到一方的隊(duì)員全部被淘汰,另一方算獲勝.假若雙方隊(duì)員的實(shí)力旗鼓相當(dāng)(即取勝對手的概率彼此相等)
          (Ⅰ)在已知乙隊(duì)先勝一局的情況下,求甲隊(duì)獲勝的概率.
          (Ⅱ)記雙方結(jié)束比賽的局?jǐn)?shù)為ξ,求ξ的分布列并求其數(shù)學(xué)期望Eξ.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          一次圍棋擂臺賽,由一位職業(yè)圍棋高手設(shè)擂做擂主,甲、乙、丙三位業(yè)余圍棋高手攻擂.如果某一業(yè)余棋手獲勝,或者擂主戰(zhàn)勝全部業(yè)余棋手,則比賽結(jié)束.已知甲、乙、丙三人戰(zhàn)勝擂主的概率分別為p1,p2,p3,每人能否戰(zhàn)勝擂主是相互獨(dú)立的.
          (1)求這次擂主能成功守擂(即戰(zhàn)勝三位攻擂者)的概率;
          (2)若按甲、乙、丙順序攻擂,這次擂臺賽共進(jìn)行了x次比賽,求x得數(shù)學(xué)期望;
          (3)假定p3<p2<p1<1,試分析以怎樣的先后順序出場,可使所需出場人員數(shù)的均值(數(shù)學(xué)期望)達(dá)到最小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          一次圍棋擂臺賽,由一位職業(yè)圍棋高手設(shè)擂做擂主,甲、乙、丙三位業(yè)余圍棋高手攻擂.如果某一業(yè)余棋手獲勝,或者擂主戰(zhàn)勝全部業(yè)余棋手,則比賽結(jié)束.已知甲、乙、丙三人戰(zhàn)勝擂主的概率分別為p1,p2,p3,每人能否戰(zhàn)勝擂主是相互獨(dú)立的.
          (1)求這次擂主能成功守擂(即戰(zhàn)勝三位攻擂者)的概率;
          (2)若按甲、乙、丙順序攻擂,這次擂臺賽共進(jìn)行了x次比賽,求x得數(shù)學(xué)期望;
          (3)假定p3<p2<p1<1,試分析以怎樣的先后順序出場,可使所需出場人員數(shù)的均值(數(shù)學(xué)期望)達(dá)到最小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          一次圍棋擂臺賽,由一位職業(yè)圍棋高手設(shè)擂做擂主,甲、乙、丙三位業(yè)余圍棋高手攻擂.如果某一業(yè)余棋手獲勝,或者擂主戰(zhàn)勝全部業(yè)余棋手,則比賽結(jié)束.已知甲、乙、丙三人戰(zhàn)勝擂主的概率分別為p1,p2,p3,每人能否戰(zhàn)勝擂主是相互獨(dú)立的.
          (1)求這次擂主能成功守擂(即戰(zhàn)勝三位攻擂者)的概率;
          (2)若按甲、乙、丙順序攻擂,這次擂臺賽共進(jìn)行了x次比賽,求x得數(shù)學(xué)期望;
          (3)假定p3<p2<p1<1,試分析以怎樣的先后順序出場,可使所需出場人員數(shù)的均值(數(shù)學(xué)期望)達(dá)到最小,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案