日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列

          (Ⅰ)求并求數(shù)列的通項(xiàng)公式;

          (Ⅱ)設(shè)證明:當(dāng)

          解:(Ⅰ)因?yàn)?sub>

          一般地,當(dāng)時(shí),

          ,即

          所以數(shù)列是首項(xiàng)為1、公差為1的等差數(shù)列,因此

          當(dāng)時(shí),

          所以數(shù)列是首項(xiàng)為2、公比為2的等比數(shù)列,因此

          故數(shù)列的通項(xiàng)公式為

          (Ⅱ)由(Ⅰ)知,

                          ①

                       ②

             ①-②得,

                          =

             所以

             要證明當(dāng)時(shí),成立,只需證明當(dāng)時(shí),成立.

             證法一

             (1)當(dāng)n=6時(shí),成立.

             (2)假設(shè)當(dāng)時(shí)不等式成立,即

             則當(dāng)n=k+1時(shí),

             由(1)、(2)所述,當(dāng)n≥6時(shí),,即當(dāng)n≥6時(shí),

             證法二

             令,則

             所以當(dāng)時(shí),.因此當(dāng)時(shí),

          于是當(dāng)時(shí),

          綜上所述,當(dāng)時(shí),

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)將數(shù)列{an}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:a1a2a3a4a5a6a7a8a9a10…記表中的第一列數(shù)a1,a2,a4,a7,…構(gòu)成的數(shù)列為{bn},b1=a1=1.Sn為數(shù)列{bn}的前n項(xiàng)和,且滿足
          2bn
          bnSn-
          S
          2
          n
          =1(n≥2)

          (Ⅰ)證明數(shù)列{
          1
          Sn
          }
          成等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)上表中,若從第三行起,第一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)a81=-
          4
          91
          時(shí),求上表中第k(k≥3)行所有項(xiàng)的和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          將數(shù)列{an}中的所有項(xiàng)按每組比前一組項(xiàng)數(shù)多一項(xiàng)的規(guī)則分組如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一組的第1個(gè)數(shù)a1,a2,a4,a7,…構(gòu)成的數(shù)列為{bn},b1=a1=1,Sn為數(shù)列{bn}的前n項(xiàng)和,且滿足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*,
          (I)求證:數(shù)列{
          1
          Sn
          }成等差數(shù)列,并求出數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)若從第2組起,每一組中的數(shù)自左向右均構(gòu)成等比數(shù)列,且公比q為同一個(gè)正數(shù),當(dāng)a18=-
          2
          15
          時(shí),求公比q的值;   
          (Ⅲ)在(Ⅱ)的條件下,記每組中最后一數(shù)a1,a3,a6,a10,…構(gòu)成的數(shù)列為{cn},設(shè)dn=n2(n-1)•cn,求數(shù)列{dn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          將數(shù)列{an}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表.記表中第一列數(shù)a1,a2,a4,a7,…構(gòu)成的數(shù)列為{bn},b1=a1=1.Sn為數(shù)列{bn}的前n項(xiàng)和,且滿足2bn=bnSn-Sn2(n≥2,n∈N*).
          (1)證明數(shù)列{
          1
          Sn
          }是等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
          (2)圖中,若從第三行起,每一行中的數(shù)按從左到右的順序構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)a81=-
          4
          91
          時(shí),求上表中第k(k≥3)行所有數(shù)的和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          過點(diǎn)P(1,0)作曲線C:y=x2(x∈(0,+∞)的切線,切點(diǎn)為M1,設(shè)M1在x軸上的投影是點(diǎn)P1.又過點(diǎn)P1作曲線C的切線,切點(diǎn)為M2,設(shè)M2在x軸上的投影是點(diǎn)P2,….依此下去,得到一系列點(diǎn)M1,M2…,Mn,…,設(shè)它們的橫坐標(biāo)a1,a2,…,an,…,構(gòu)成數(shù)列為{an}.
          (1)求證數(shù)列{an}是等比數(shù)列,并求其通項(xiàng)公式;
          (2)令bn=
          nan
          ,求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          將數(shù)列{an}中的所有項(xiàng)按每組比前一組項(xiàng)數(shù)多一項(xiàng)的規(guī)則分組如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一組的第1個(gè)數(shù)a1,a2,a4,a7,…構(gòu)成的數(shù)列為{bn},b1=a1=1,Sn為數(shù)列{bn}的前n項(xiàng)和,且滿足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*,
          (I)求證:數(shù)列{
          1
          Sn
          }成等差數(shù)列,并求出數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)若從第2組起,每一組中的數(shù)自左向右均構(gòu)成等比數(shù)列,且公比q為同一個(gè)正數(shù),當(dāng)a18=-
          2
          15
          時(shí),求公比q的值;   
          (Ⅲ)在(Ⅱ)的條件下,記每組中最后一數(shù)a1,a3,a6,a10,…構(gòu)成的數(shù)列為{cn},設(shè)dn=n2(n-1)•cn,求數(shù)列{dn}的前n項(xiàng)和Tn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案