日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)若函數(shù)上的增函數(shù)求的取值范圍;

          2)若函數(shù)恰有兩個(gè)不等的極值點(diǎn),證明:.

          【答案】1;(2)證明見解析.

          【解析】

          1)問題轉(zhuǎn)化為對(duì)恒成立.求導(dǎo)后分離參數(shù)得到,設(shè),利用導(dǎo)數(shù)研究單調(diào)性,求得最小值,根據(jù)不等式恒成立的意義得到所求范圍;

          2)由,為兩個(gè)極值點(diǎn)不妨設(shè),聯(lián)立極值點(diǎn)的條件,并結(jié)合要證不等式,消去a,將要證不等式轉(zhuǎn)化為只含有,的不等式,適當(dāng)變形轉(zhuǎn)化為只含有的不等式,作換元,轉(zhuǎn)化為關(guān)于t的不等式,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,進(jìn)而證明即可.

          解:(1,上增函數(shù)等價(jià)于對(duì)恒成立.

          ,設(shè),

          0

          0

          +

          極小值

          ,故

          2)由

          ,由,為兩個(gè)極值點(diǎn)不妨設(shè)

          兩式相減得

          要證明:等價(jià)于證明

          兩邊同除

          等價(jià)于證明:,設(shè)

          ,

          設(shè)

          由(1)可知:當(dāng)時(shí),恒成立,成立,

          ,∴

          單調(diào)遞減

          成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列命題,其中正確命題有(

          A.空間任意三個(gè)不共面的向量都可以作為一個(gè)基底

          B.已知向量,則與任何向量都不能構(gòu)成空間的一個(gè)基底

          C.是空間四點(diǎn),若不能構(gòu)成空間的一個(gè)基底,那么共面

          D.已知向量組是空間的一個(gè)基底,若,則也是空間的一個(gè)基底

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是(

          A.某班位同學(xué)從文學(xué)、經(jīng)濟(jì)和科技三類不同的圖書中任選一類,不同的結(jié)果共有種;

          B.甲乙兩人獨(dú)立地解題,已知各人能解出的概率分別是,則題被解出的概率是;

          C.某校名教師的職稱分布情況如下:高級(jí)占比,中級(jí)占比,初級(jí)占比,現(xiàn)從中抽取名教師做樣本,若采用分層抽樣方法,則高級(jí)教師應(yīng)抽取人;

          D.兩位男生和兩位女生隨機(jī)排成一列,則兩位女生不相鄰的概率是.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn2ann.

          (1)求數(shù)列{an}的通項(xiàng)公式;

          (2)設(shè),記數(shù)列{bn}的前n項(xiàng)和為Tn,證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC的內(nèi)切圓分別與邊BC、CA、AB切于點(diǎn)D、E、F,AD與BE交于點(diǎn)P,設(shè)點(diǎn)P關(guān)于直線EF、FD、DE的對(duì)稱點(diǎn)分別X、Y、Z.證明:AX、BY、CZ三線共點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中, 為了提高安保的級(jí)別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國的人員安排酒店住宿,這五個(gè)參會(huì)國要在、、三家酒店選擇一家,且每家酒店至少有一個(gè)參會(huì)國入住,則這樣的安排方法共有

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市氣象部門根據(jù)2018年各月的每天最高氣溫平均值與最低氣溫平均值(單位:)數(shù)據(jù),繪制如下折線圖:

          那么,下列敘述錯(cuò)誤的是( )

          A. 各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)

          B. 全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大

          C. 全年中各月最低氣溫平均值不高于的月份有5個(gè)

          D. 從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓Ax2+y2+2x-15=0和定點(diǎn)B1,0),M是圓A上任意一點(diǎn),線段MB的垂直平分線交MA于點(diǎn)N,設(shè)點(diǎn)N的軌跡為C

          (Ⅰ)求C的方程;

          (Ⅱ)若直線y=kx-1)與曲線C相交于P,Q兩點(diǎn),試問:在x軸上是否存在定點(diǎn)R,使當(dāng)k變化時(shí),總有∠ORP=ORQ?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線Cy2=4x與橢圓E1ab0)有一個(gè)公共焦點(diǎn)F.設(shè)拋物線C與橢圓E在第一象限的交點(diǎn)為M.滿足|MF|.

          1)求橢圓E的標(biāo)準(zhǔn)方程;

          2)過點(diǎn)P1,)的直線交拋物線CAB兩點(diǎn),直線PO交橢圓E于另一點(diǎn)Q.PAB的中點(diǎn),求△QAB的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案