日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=kx+m,數(shù)列{an},{bn}滿足:當(dāng)x∈[a1,b1]時(shí),f(x)的值域是[a2,b2];當(dāng)x∈[a2,b2]時(shí),f(x)的值域是[a3,b3],…,當(dāng)x∈[an-1,bn-1](n∈N*,且n≥2)時(shí),f(x)的值域是[an,bn],其中k,m為常數(shù),a1=0,b1=1.
          (Ⅰ)若k=2,且數(shù)列{bn}是等比數(shù)列,求m的值;
          (Ⅱ)若k>0,設(shè){an}與{bn}的前n項(xiàng)和分別為Sn和Tn,求(T1+T2+…+Tn)-(S1+S2+…+Sn).
          分析:(Ⅰ)由k=2,得f(x)=2x+m在R上是增函數(shù),從而bn+1=2bn+m,n∈N+,根據(jù){bn}是等比數(shù)列,得bn≠0,于是
          bn+1
          bn
          =2+
          m
          bn
          (是常數(shù)),從而m=0或{bn}是常數(shù)列,故可求m的值;
          (Ⅱ)由k>0,得f(x)=kx+m在R上是增函數(shù),可得{bn-an}是以b1-a1為首項(xiàng),k為公比的等比數(shù)列,從而bn-an=kn-1(b1-a1)=kn-1,故Tn-Sn=(b1-a1)+(b2-a2)+…+(bn-an)=
          n,k=1
          1-kn
          1-k
          ,k>0,k≠1
          ,從而可求(T1+T2+…+Tn)-(S1+S2+…+Sn)的值.
          解答:解:(I)∵k=2,∴f(x)=2x+m在R上是增函數(shù),
          ∴bn+1=2bn+m,n∈N+,
          又∵{bn}是等比數(shù)列,∴bn≠0,
          于是
          bn+1
          bn
          =2+
          m
          bn
          (是常數(shù))
          ∴m=0或{bn}是常數(shù)列,
          又b1=1,
          ∴若{bn}是常數(shù)列,則必有b2=2b1+m=2+m=1,即m=-1,
          綜上,m=0或m=-1.
          (II)∵k>0,∴f(x)=kx+m在R上是增函數(shù),
          ∴an=kan-1+m,bn=kbn-1+m(n∈N+,且n≥2),
          兩式相減得bn-an=k(bn-1-an-1),即{bn-an}是以b1-a1為首項(xiàng),k為公比的等比數(shù)列,
          bn-an=kn-1(b1-a1)=kn-1
          ∴Tn-Sn=(b1-a1)+(b2-a2)+…+(bn-an)=
          n,k=1
          1-kn
          1-k
          ,k>0,k≠1
          ,
          ∴(T1+T2+…+Tn)-(S1+S2+…+Sn)=(T1-S1)+(T2-S2)+…+(Tn-Sn
          =
          n(n+1)
          2
          ,k=1
          kn+1-(n+1)k+n
          (1-k)2
          ,k>0,k≠1
          點(diǎn)評(píng):本題以函數(shù)為載體,考查等差數(shù)列與等比數(shù)列的通項(xiàng),考查數(shù)列的求和,將數(shù)列轉(zhuǎn)化為等差數(shù)列與等比數(shù)列是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
          (Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時(shí),將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
          (Ⅱ)當(dāng)k=4時(shí),若對(duì)?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),試求實(shí)數(shù)b的取值范圍..

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          k+1x
          (k<0),求使得f(x+k)>1成立的x的集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=k•a-x(k,a為常數(shù),a>0且a≠1)的圖象過點(diǎn)A(0,1),B(3,8).
          (1)求實(shí)數(shù)k,a的值;
          (2)若函數(shù)g(x)=
          f(x)-1f(x)+1
          ,試判斷函數(shù)g(x)的奇偶性,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•蕪湖二模)給出以下五個(gè)命題:
          ①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
          ②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點(diǎn)P(
          π
          3
          ,1),則函數(shù)圖象上過點(diǎn)P的切線斜率等于-
          3

          ③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
          ④函數(shù)f(x)=(
          1
          2
          )x-x
          1
          3
          在區(qū)間(0,1)上存在零點(diǎn).
          ⑤已知向量
          a
          =(1,-2)
          與向量
          b
          =(1,m)
          的夾角為銳角,那么實(shí)數(shù)m的取值范圍是(-∞,
          1
          2

          其中正確命題的序號(hào)是
          ②③④
          ②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
          (Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時(shí),試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
          (Ⅱ)當(dāng)k=4時(shí),若對(duì)任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),試求實(shí)數(shù)b的取值范圍..

          查看答案和解析>>

          同步練習(xí)冊(cè)答案