日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. “x(x-3)≤0”是“|x-1|≤2”成立的( 。
          分析:首先解出兩個不等式,再比較x的范圍,范圍小的可以推出范圍大的.
          解答:解:由|x-1|≤2,
          得-1≤x≤3,
          由x(x-3)≤0,
          得0≤x≤3,
          因為-1≤x≤3的范圍比0≤x≤3的范圍大,
          所以x(x-3)≤0成立能推出|x-1|≤2成立,反之推出|x-1|≤2成立推不出x(x-3)≤0成立,
          “x(x-3)≤0”是“|x-1|≤2”成立的充分不必要條件,
          故選A.
          點評:本題考查的知識點是必要條件,充分條件與充要條件判斷,其中熟練掌握集合法判斷充要條件的原則“誰小誰充分,誰大誰必要”,是解答本題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          對于定義在D上的函數(shù)y=f(x),若同時滿足.
          ①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
          ②對于D內(nèi)任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
          (1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
          (文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
          (2)(理)設f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
          (文)設f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
          (3)(理)若F(x)=mx+
          x2+2x+n
          ,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
          (文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=
          (
          1
          2
          )x-3(x≤0)
          x
          1
          2
          (x>0)
          ,已知f(a)>1,則實數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=sin(ωx+
          π
          3
          )(ω>0)
          ,若f(
          π
          6
          )=f(
          π
          3
          )
          且f(x)在區(qū)間(
          π
          6
          π
          3
          )
          上有最小值,無最大值,則ω的值為( 。
          A、
          2
          3
          B、
          5
          3
          C、
          14
          3
          D、
          38
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源:宜都一中2008屆高三數(shù)學周練(5) 題型:044

          已知f(x)=x(x-a)(x-b),點A(s,f(s)),B(t,f(t)).

          (1)若a=b=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;

          (2)若函數(shù)f(x)的導函數(shù)滿足:當|x|≤1時,有恒成立,求函數(shù)f(x)的解析表達式;

          (3)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b=,證明:不可能垂直.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2007年上海市徐匯區(qū)零陵中學高三3月綜合練習數(shù)學試卷(五)(解析版) 題型:解答題

          (1)已知函數(shù)f(x)=ax-x(a>1).
          ①若f(3)<0,試求a的取值范圍;
          ②寫出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
          (2)在曲線上存在兩個不同點關于直線y=x對稱,求出其坐標;若曲線(p≠0)上存在兩個不同點關于直線y=x對稱,求實數(shù)p的范圍;
          (3)當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并取加以研究.當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

          查看答案和解析>>

          同步練習冊答案