日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (1)若,求曲線在點(diǎn)處的切線方程;

          (2)求證:函數(shù)有且只有一個(gè)零點(diǎn).

          【答案】(1);(2)詳見解析.

          【解析】

          1)對函數(shù)進(jìn)行求導(dǎo),求出切線的斜率和切點(diǎn)坐標(biāo),即可得答案;

          2)函數(shù)的定義域?yàn)?/span>,要使函數(shù)有且只有一個(gè)零點(diǎn),只需方程有且只有一個(gè)根,即只需關(guān)于x的方程上有且只有一個(gè)解,利用導(dǎo)數(shù)可得函數(shù)單調(diào)遞增,再利用零點(diǎn)存在定理,即可得答案;

          (1)當(dāng)時(shí),函數(shù),,

          ,,

          所以函數(shù)在點(diǎn)處的切線方程是

          (2)函數(shù)的定義域?yàn)?/span>,

          要使函數(shù)有且只有一個(gè)零點(diǎn),只需方程有且只有一個(gè)根,

          即只需關(guān)于x的方程上有且只有一個(gè)解.

          設(shè)函數(shù),

          ,

          則/span>,

          ,得

          x

          單調(diào)遞減

          極小值

          單調(diào)遞增

          由于,

          所以,

          所以上單調(diào)遞增,

          ,

          ①當(dāng)時(shí), ,函數(shù)有且只有一個(gè)零點(diǎn),

          ②當(dāng)時(shí),由于,所以存在唯一零點(diǎn).

          綜上所述,對任意的函數(shù)有且只有一個(gè)零點(diǎn).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱中,分別為棱的中點(diǎn).

          1)在上確定點(diǎn)M,使平面,并說明理由。

          2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生,新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺(tái).校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

          愿意

          不愿意

          男生

          60

          20

          女生

          40

          40

          1)通過估算,試判斷男、女哪種性別的學(xué)生愿意投入到新生接待工作的概率更大.

          2)能否有99%的把握認(rèn)為,愿意參加新生接待工作與性別有關(guān)?

          附:,其中

          0.05

          0.01

          0.001

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為,,且,為等邊三角形,過點(diǎn)的直線與橢圓軸右側(cè)的部分交于、兩點(diǎn).

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)求四邊形面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,平面平面ABCD,,底面ABCD是邊長為2的菱形,點(diǎn)E,F分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).

          求證:(1)直線平面EFG;

          2)直線平面SDB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為、,拋物線的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn).

          1)求橢圓的方程;

          2)已知直線與圓相切,且直線與橢圓相交于、兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線的焦點(diǎn)為.

          若點(diǎn)為拋物線上異于原點(diǎn)的任一點(diǎn),過點(diǎn)作拋物線的切線交軸于點(diǎn),證明:.

          ,是拋物線上兩點(diǎn),線段的垂直平分線交軸于點(diǎn) (不與軸平行),且.過軸上一點(diǎn)作直線軸,且被以為直徑的圓截得的弦長為定值,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)滿足的虛部為2,

          1)求復(fù)數(shù)

          2)設(shè)在復(fù)平面上對應(yīng)點(diǎn)分別為,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐的底面中,,,平面的中點(diǎn),且

          1)求證:∥平面;

          2)求二面角的余弦值;

          3)在線段內(nèi)是否存在點(diǎn),使得?若存在指出點(diǎn)的位置,若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案