(本題滿分14分)
|
求證:(Ⅰ)CD⊥平面A1ABB1;
(Ⅱ)AC1//平面CDB1.
證明:(Ⅰ)∵ABC—A1B1C1是直三棱柱,
∴平面ABC⊥平面A1ABB1, …………………………………2分
∵AC=BC,點(diǎn)D是AB的中點(diǎn),
∴CD⊥AB. ………………………………4分
∵平面ABC∩平面A1ABB1=AB,CD平面ABC,
∴CD⊥平面A1ABB1. ……………………………………………7分
(Ⅱ)連結(jié)BC1,設(shè)BC1與B1C的交點(diǎn)為E,連結(jié)DE. ……………………9分
∵D是AB的中點(diǎn),E是BC1的中點(diǎn),∴DE//AC1. ………………………11分
∵DE平面CDB1,AC
平面CDB1,
∴AC1//平面CDB1. ……………………………………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動點(diǎn)
滿足
。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)
的軌跡上是否存在兩個不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根
,請求出一個長度為
的區(qū)間
,使
;如果沒有,請說明理由?(注:區(qū)間的長度為
).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com