日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在多面體ABCD-A1B1C1D1中,上、下底面平行且均為矩形,相對的側(cè)面與同一底面所成的二面角大小相等,上、下底面矩形的長、寬分別為c,d與a,b且a>c,b>d,兩底面間的距離為h。
          (1)求側(cè)面ABB1A1與底面ABCD所成二面角正切值;
          (2)在估測該多面體的體積時,經(jīng)常運用近似公式V=S中截面·h來計算,已知它的體積公式是 (S上底面+4S中截面+S下底面),試判斷V與V的大小關(guān)系,并加以證明。
          解:(1)解:過B1C1作底面ABCD的垂直平面,交底面于PQ,過B1作B1G⊥PQ,垂足為G
          ∵平面ABCD∥平面A1B1C1D1,∠A1B1C1=90°,
          ∴AB⊥PQ,AB⊥B1P
          ∴∠B1PG為所求二面角的平面角
          過C1作C1H⊥PQ,垂足為H
          由于相對側(cè)面與底面所成二面角的大小相等,故四邊形B1PQC1為等腰梯形
          ,又
          ,
          即所求二面角的正切值為。
          (2)V<V
          證明: ∵a>c,b>d,

           
          ∴V<V。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
          .
          BB1,AB=AC=AA1=
          2
          2
          BC,B1C1
          .
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)求證:AB1∥平面A1C1C;
          (3)求二面角C1-A1C-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB
          ,B1C1
          .
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (Ⅰ)求證:AB1∥平面 A1C1C;
          (Ⅱ)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
          12
          BC.
          (Ⅰ)求證:面A1AC⊥面ABC;
          (Ⅱ)求證:AB1∥面A1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
          2
          2
          BC
          ,B1C1∥=
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)若D是BC的中點,求證:B1D∥平面A1C1C;
          (3)若BC=2,求幾何體ABC-A1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB,B1C1
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (I)求證:A1B1⊥平面AA1C; 
          (II)求證:AB1∥平面 A1C1C;
          (II)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案