日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=mx2+(m2-4)x+m是偶函數(shù),g(x)=ln(mx-1)在[-4,-1]內(nèi)單調(diào)遞減,則實(shí)數(shù)m=
          -2
          -2
          分析:由題意可得f(-x)=f(x),即mx2-(m2-4)x+m=mx2+(m2-4)x+m,由x的任意性可得m2-4=0,解得m=2,或m=-2,驗(yàn)證可得當(dāng)m=-2時(shí)滿足題意.
          解答:解:∵函數(shù)f(x)=mx2+(m2-4)x+m是偶函數(shù),
          ∴f(-x)=f(x),即mx2-(m2-4)x+m=mx2+(m2-4)x+m,
          可得m2-4=0,解得m=2,或m=-2,
          當(dāng)m=2時(shí),g(x)=ln(mx-1)=ln(2x-1)不可能為減函數(shù),
          當(dāng)m=-2時(shí),g(x)=ln(mx-1)=ln(-2x-1),
          由-2x-1>0可得定義域?yàn)椋?∞,-
          1
          2
          ),
          由復(fù)合函數(shù)的單調(diào)性可知函數(shù)在(-∞,-
          1
          2
          )上單調(diào)遞減,
          當(dāng)然滿足在[-4,-1]內(nèi)單調(diào)遞減.
          故答案為:-2
          點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性和奇偶性,涉及函數(shù)的定義域,屬中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過點(diǎn)A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*
          (1)求Sn及an;
          (2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m(x+
          1
          x
          )的圖象與h(x)=(x+
          1
          x
          )+2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
          (1)求m的值;
          (2)若g(x)=f(x)+
          a
          4x
          在(0,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          m
          n
          ,其中
          m
          =(sinωx+cosωx,
          3
          cosωx)
          n
          =(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對(duì)稱軸間的距離不小于
          π
          2

          (Ⅰ)求ω的取值范圍;
          (Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=
          3
          ,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          以下兩題任選一題:(若兩題都作,按第一題評(píng)分)
          (一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線θ=
          π
          3
          (ρ∈R)的距離
          3
          2
          3
          2
          ;
          (二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時(shí),實(shí)數(shù)m的值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
          (1)求m的值;
          (2)若a,b,c∈R+,且
          1
          a
          +
          1
          2b
          +
          1
          3c
          =m,求Z=a+2b+3c的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案