日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20. 設.

          (Ⅰ)證明數(shù)列是常數(shù)數(shù)列;

          (Ⅱ)試找出一個奇數(shù),使以18為首項,7為公比的等比數(shù)列中的所有項都是數(shù)列中的項,并指出是數(shù)列中的第幾項.

          解:(Ⅰ)當n≥2時,由已知得.

          因為an=Sn-Sn-1≠0,所以SnSn-1=3n2.  ①

          于是Sn+1Sn=3(n+1)2.                        ②

          由②-①得:an+1+an=6n+3.                  ③

          于是an+2+an+1=6n+9.                          ④

          由④-③得:an+2 - an=6.                      ⑤

          即數(shù)列{an+2an}(n≥2)是常數(shù)數(shù)列.

          (Ⅱ)由①有S2S1=12,所以a2=12-2a,由③有a3+a2=15,所以a3=3+2a.

          而⑤表明:數(shù)列{a2k}和{a2k+1}分別是以a2、a3為首項,6為公差的等差數(shù)列,

          所以a2k =a2+(k-1)×6=6k-2a+6, a2k +1=a3+(k-1)×6=6k+2a-3,k∈N*.

          由題設知,bn=18×7n-1,當a為奇數(shù)時,a2k +1為奇數(shù),而bn為偶數(shù),所以bn不是數(shù)列{a2k +1}中的項,bn只可能是數(shù)列{a2k}中的項.

          b1=18是數(shù)列{a2k}中的第k0項,由18=6k0-2a+6得a=3k0-6,取k0=3,得a=3,此時a2k =6k,由bn= a2k得18×7n-1=6k,k=3×7n-1∈N*,從而bn是數(shù)列{an}中的第6×7n-1項.

          (注:答案取滿足a=3k0-6,k0∈N*的任一奇數(shù),說明bn是數(shù)列{an}中的第6×7n-1-2項即可)


          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知平面上兩個定點M
          (0,-2)
          、N
          (0,2)
          ,P為一個動點,且滿足
          MP
          MN
          =
          |
          PN
          |•|
          MN
          |

          (1)求動點P的軌跡C的方程;
          (2)若A、B是軌跡C上的兩個不同動點
          AN
          NB
          .分別以A、B為切點作軌跡C的切線,設其交點為Q,證明
          NQ
          AB
          為定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=4an+2
          (1)設bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列;
          (2)求數(shù)列{an}的通項公式;
          (3)令cn=nbn,求數(shù)列{cn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          x
          2x+1
          ,x∈(0,+∞)
          ,數(shù)列{an}滿足a1=1,an+1=f(an);數(shù)列{bn}滿足b1=
          1
          2
          ,bn+1=
          1
          1-2f(Sn)
          ,其中Sn為數(shù)列{bn}前n項和,n=1,2,3…
          (1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
          (2)設Tn=
          1
          a1b1
          +
          1
          a2b2
          +…+
          1
          anbn
          ,證明Tn<5.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          數(shù)列{an}滿足a1=1且an+1=(1+
          1
          n2+n
          )an+
          1
          2n
          (n≥1)

          (1)用數(shù)學歸納法證明:an≥2(n≥2)
          (2)設bn=
          an+1-an
          an
          ,證明數(shù)列{bn}的前n項和Sn
          7
          4

          (3)已知不等式ln(1+x)<x對x>0成立,證明:an<2e
          3
          4
          (n≥1)(其中無理數(shù)e=2.71828…)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•棗莊一模)設數(shù)列{an}滿足a1=1,a2=2,對任意的n∈N*,an+2是an+1與an的等差中項.
          (1)設bn=an+1-an,證明數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
          (2)寫出數(shù)列{an}的通項公式(不要求計算過程),令cn=
          3
          2
          n(
          5
          3
          -an)
          ,求數(shù)列{cn}的前n項和Sn

          查看答案和解析>>

          同步練習冊答案