日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列an、bn、cn的前n項(xiàng)和分別為Sn、Tn、Rn,對(duì)?n∈N*,an=5Sn+1,,cn=b2n-b2n-1
          ①求an的通項(xiàng)公式;
          ②求證:;
          ③若Tn<λn,對(duì)?n∈N*恒成立,求λ的取值范圍.
          【答案】分析:①由an=5Sn+1得a1=5S1+1=5a1+1,.n>1時(shí),an-1=5Sn-1+1,由此能求出an
          ,,,由此能夠證明
          ③由Tn<λn得,,由此進(jìn)行分類討論能夠得到λ的取值范圍是.
          解答:解:①由an=5Sn+1得a1=5S1+1=5a1+1,.n>1時(shí),an-1=5Sn-1+1,
          兩式相減得an-an-1=5(Sn-Sn-1)=5an,
          所以
          ,


          從而
          ③由Tn<λn得,
          若n=2k-1(k∈N*)是奇數(shù),
          則Tn≥4n-1,當(dāng)且僅當(dāng)λ≥4;
          若n=2k(k∈N*)是偶數(shù),,
          Tn<4n,即當(dāng)λ≥4時(shí)有Tn<λn.
          綜上所述,λ的取值范圍是[4,+∞).
          點(diǎn)評(píng):多個(gè)數(shù)列通常意味著多種形式的數(shù)列、多層次問(wèn)題,解題通常需要有開(kāi)闊的視野和思路,能適當(dāng)選擇、適時(shí)轉(zhuǎn)換,關(guān)鍵是用等差等比數(shù)列性質(zhì)處理好“起始”數(shù)列,不等式的處理則要求適度“放大”或“縮小”,處理好端點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)附加題:
          A.如圖,四邊形ABCD內(nèi)接于圓O,弧AB=弧AD,過(guò)A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn).
          求證:AB2=BE•CD.
          B.設(shè)數(shù)列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足
          an+4
          bn+4
          =M
          an
          bn
          ,試求二階矩陣M.
          C.已知橢圓C的極坐標(biāo)方程為ρ2=
          12
          3cos2θ+4sin2θ
          ,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
          x=2+
          2
          2
          t
          y=
          2
          2
          t
          (t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
          D.已知x,y,z均為正數(shù).求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}、{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,則a37+b37等于(    )

          A.0              B.37               C.100               D.-37

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}、{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,那么an+bn所組成的數(shù)列的第37項(xiàng)的值是(    )

          A.0           B.37               C.100                D.-37

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}、{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,那么由an+bn所組成的數(shù)列的第37項(xiàng)的值為(    )

          A.0            B.37                C.100             D.-37

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}、{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,則a37+b37等于(    )

          A.0              B.37               C.100               D.-37

          查看答案和解析>>

          同步練習(xí)冊(cè)答案