日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知正方體ABCD—A1B1C1D1中,E、F分別是AB和BC的中點,試問在棱DD1上能否找到一點M,使BM⊥平面B1EF?若能,試確定點M的位置;若不能,說明理由.

          解析:我們考慮如果BM⊥平面B1EF時,點M應該滿足使BM⊥B1E,即其在平面A1B上的射影BP應該滿足BP⊥B1E,經(jīng)計算,不難得到點M應為DD1的中點.

          證明:如圖,取DD1的中點M,AA1的中點P,CC1的中點Q.

              連結(jié)MP、MQ、BP、BQ,易證得MP⊥面ABB1A1,

          ∴MP⊥B1E.

              又由平面幾何知BP⊥B1E,

          ∴B1E⊥平面MBP.

          ∴B1E⊥MB.

              同理可得BM⊥B1F.

              又B1E∩B1F=B1,

          ∴BM⊥平面B1EF.

          點評:證線面垂直常用的方法有:

          (1)利用定義,證明直線垂直于平面內(nèi)的兩條相交直線;

          (2)運用線面垂直的性質(zhì)定理:兩條平行直線中的一條垂直于一個平面,則另一條也垂直于這個平面.

              上述結(jié)論“BP⊥B1E”的證明可以為:Rt△ABP≌Rt△BB1E,進一步可推得BP⊥B1E.


          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          8、如圖,已知正方體ABCD-A1B1C1D1的棱長為3,點E,F(xiàn)在線段AB上,點M在線段B1C1上,點N在線段C1D1上,且EF=1,D1N=x,AE=y,M是B1C1的中點,則四面體MNEF的體積( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點E為棱AB的中點.
          求:
          (1)D1E與平面BC1D所成角的正弦值;
          (2)二面角D-BC1-C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知正方體ABCD-A1B1C1D1的棱長為2,E、F分別是D1C、AB的中點.
          (I)求證:EF∥平面ADD1A1;
          (Ⅱ)求二面角D-EF-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P,Q,R分別是棱AB,CC1,D1A1的中點.
          (1)求證:B1D⊥平面PQR;
          (2)設(shè)二面角B1-PR-Q的大小為θ,求|cosθ|.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•寶山區(qū)一模)如圖,已知正方體ABCD-A1B1C1D1 的棱長為2,E,F(xiàn)分別是BB1,CD的中點.
          (1)求三棱錐E-AA1F的體積;
          (2)求異面直線EF與AB所成角的大。ńY(jié)果用反三角函數(shù)值表示).

          查看答案和解析>>

          同步練習冊答案