日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓 的左、右焦點(diǎn)分別為,離心率是,直線過點(diǎn)交橢圓于 兩點(diǎn),當(dāng)直線過點(diǎn)時(shí), 的周長為.

          求橢圓的標(biāo)準(zhǔn)方程;

          當(dāng)直線繞點(diǎn)運(yùn)動(dòng)時(shí),試求的取值范圍.

          【答案】(Ⅰ)橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ) .

          【解析】試題分析:

          Ⅰ)由題意結(jié)合橢圓的定義可知的周長為 , ,結(jié)合離心率可知 ,則橢圓的標(biāo)準(zhǔn)方程為.

          Ⅱ)設(shè) 兩點(diǎn)坐標(biāo)分別為, ,當(dāng)直線軸重合時(shí), ,當(dāng)直線軸重合時(shí), ,當(dāng)直線斜率為時(shí), ,當(dāng)直線斜率存在且不為時(shí),聯(lián)立直線方程與橢圓方程可得,則, ,結(jié)合韋達(dá)定理整理計(jì)算可得不等式,解得,則.

          試題解析:

          的周長為 ,

          ,

          ,,

          ∴橢圓的標(biāo)準(zhǔn)方程為.

          Ⅱ)設(shè), 兩點(diǎn)坐標(biāo)分別為, ,

          當(dāng)直線軸重合時(shí), 點(diǎn)與上頂點(diǎn)重合時(shí),

          當(dāng)直線軸重合時(shí), 點(diǎn)與下頂點(diǎn)重合時(shí), ,

          當(dāng)直線斜率為時(shí), ,

          當(dāng)直線斜率存在且不為時(shí),不妨設(shè)直線方程為,

          聯(lián)立,

          ,

          則有

          設(shè),則,代入①②得

          ,解得,

          綜上,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=xlnx和g(x)=m(x2-1)(m∈R).

          (1)m=1時(shí),求方程f(x)=g(x)的實(shí)根;

          (2)若對任意的x∈(1,+∞),函數(shù)y=g(x)的圖象總在函數(shù)y=f(x)圖象的上方,求m的取值范圍;

          (3)求證: +…+>ln(2n+1) (n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知.

          (1)若方程上有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

          (2)若上的最小值為求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某超市在2017年五一正式開業(yè),開業(yè)期間舉行開業(yè)大酬賓活動(dòng),規(guī)定:一次購買總額在區(qū)間內(nèi)者可以參與一次抽獎(jiǎng),根據(jù)統(tǒng)計(jì)發(fā)現(xiàn)參與一次抽獎(jiǎng)的顧客每次購買金額分布情況如下

          1求參與一次抽獎(jiǎng)的顧客購買金額的平均數(shù)與中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表結(jié)果保留到整數(shù));

          2若根據(jù)超市的經(jīng)營規(guī)律,購買金額與平均利潤有以下四組數(shù)據(jù)

          試根據(jù)所給數(shù)據(jù),建立關(guān)于的線性回歸方程,并根據(jù)1)中計(jì)算的結(jié)果估計(jì)超市對每位顧客所得的利潤.

          參考公式 .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個(gè)巨大的市場.為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

          組別

          頻數(shù)

          (Ⅰ)求所得樣本的中位數(shù)(精確到百元);

          (Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;

          (Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

          附:若,則,

          , .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知長方體,直線與平面所成角為垂直于點(diǎn)的中點(diǎn).

          (1)求直線與平面所成角的正弦值;

          (2)線段上是否存在點(diǎn),使得二面角的余弦值為?若存在,確定點(diǎn)位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

          (1)求, 的值;

          (2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓: 的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且過點(diǎn).過點(diǎn)的直線交橢圓, 兩點(diǎn), 為橢圓的左頂點(diǎn).

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)求面積的最大值,并求此時(shí)直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2018海南高三階段性測試(二模)如圖,在直三棱柱中, , ,點(diǎn)的中點(diǎn),點(diǎn)上一動(dòng)點(diǎn).

          I)是否存在一點(diǎn),使得線段平面?若存在,指出點(diǎn)的位置,若不存在,請說明理由.

          II)若點(diǎn)的中點(diǎn)且,求三棱錐的體積.

          查看答案和解析>>

          同步練習(xí)冊答案