日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在命題“若拋物線y=ax2+bx+c的開口向下,則集合{x|ax2+bx+c<0}≠”的逆命題,否命題,逆否命題的真假結(jié)論是(
          A.都真
          B.都假
          C.否命題真
          D.逆否命題真

          【答案】D
          【解析】解:對于原命題“若拋物線y=ax2+bx+c的開口向下,則{x|ax2+bx+c<0}≠φ.” 可知a<0,∴{x|ax2+bx+c<0}≠φ”一定成立,故原命題是真命題;
          又因為逆命題為“{x|ax2+bx+c<0}≠φ,則拋物線y=ax2+bx+c的開口向下”
          當a=1,b=﹣2,c=﹣3時,顯然{x|ax2+bx+c<0}={x|﹣1<x<3}≠φ,但是拋物線y=ax2+bx+c的開口向上,
          所以逆命題不成立是假命題.
          又由原命題與逆否命題和逆命題跟與否命題都互為逆否命題,且互為逆否命題的命題真假性相同.
          所以原命題與逆否命題都是真命題,逆命題與否命題都是假命題.
          故選D.
          【考點精析】利用四種命題的真假關(guān)系對題目進行判斷即可得到答案,需要熟知一個命題的真假與其他三個命題的真假有如下三條關(guān)系:(原命題 逆否命題)①、原命題為真,它的逆命題不一定為真;②、原命題為真,它的否命題不一定為真;③、原命題為真,它的逆否命題一定為真.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】等比數(shù)列{an}的各項均為正數(shù),且a5a6+a2a9=18,則log3a1+log3a2+…+log3a10的值為(
          A.12
          B.10
          C.8
          D.2+log35

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知α∥β,aα,B∈β,則在β內(nèi)過點B的所有直線中(
          A.不一定存在與a平行的直線
          B.只有兩條與a平行的直線
          C.存在無數(shù)條與a平行的直線
          D.存在唯一一條與a平行的直線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}的前n項和Sn=3n2﹣5n,則a6的值為(
          A.78
          B.58
          C.50
          D.28

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】集合A={x|f(x)=x},B={x|f(f(x))=x},則集合A與集合B之間的關(guān)系(
          A.AB
          B.BA
          C.BA
          D.AB

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】命題“x∈R,cosx≤1”的否定是(
          A.x∈R,cosx≥1
          B.x∈R,cosx>1
          C.x∈R,cos≥1
          D.x∈R,cosx>1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若f(x)是定義R上的奇函數(shù),且當x>0時f(x)=lg(x+1),則x<0時,f(x)=(
          A.lg(1﹣x)
          B.﹣lg(x+1)
          C.﹣lg(1﹣x)
          D.以上都不對

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)全集U=R,集合A={x|﹣2<x<2},集合B={x|x2﹣4x+3>0}
          求A∩B,A∪B,A∩UB.

          查看答案和解析>>

          同步練習(xí)冊答案