(本題滿分14分)已知.
(1)當(dāng)時,求
上的值域;
(2) 求函數(shù)在
上的最小值;
(3) 證明: 對一切,都有
成立
解(1)∵=
, x∈[0,3] …………..
1分
當(dāng)時,
;當(dāng)
時,
故值域為
………………. 3分
(2),當(dāng)
,
,
單調(diào)遞減,當(dāng)
,
,
單調(diào)遞增.
…………………………. 5分
① ,t無解;
…………… 6分
② ,即
時,
; ………………. 7分
③
,即
時,
在
上單調(diào)遞增,
;……8分
所以.
……………….
9分
(3),所以問題等價于證明
,由(2)可知
的最小值是
,當(dāng)且僅當(dāng)
時取到 ;………….. 11分
設(shè),則
,易得
,當(dāng)且僅當(dāng)
時
取到,從而對一切,都有
成立.
…………….. 14分
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知,且以下命題都為真命題:
命題 實系數(shù)一元二次方程
的兩根都是虛數(shù);
命題 存在復(fù)數(shù)
同時滿足
且
.
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)
(1)若,求x的值;
(2)若對于
恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知橢圓:
的離心率為
,過坐標(biāo)原點
且斜率為
的直線
與
相交于
、
,
.
⑴求、
的值;
⑵若動圓與橢圓
和直線
都沒有公共點,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當(dāng)x=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,
求的最大值;
(3)當(dāng)取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com