日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直三棱柱ABC-A1B1C1中,B1C1=A1C1,AC1⊥A1B,M,N分別是A1B1,AB 的中點(diǎn),給出如下三個(gè)結(jié)論:
          ①C1M⊥平面A1ABB1
          ②A1B⊥AM
          ③平面AMC1∥平面CNB1,其中正確結(jié)論為
          ①②③
          ①②③
          (填序號(hào))
          分析:由直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,C1M?平面A1B1C1,知C1M⊥AA1,由B1C1=A1C1,M是A1B1的中點(diǎn),知C1M⊥A1B1,故C1M⊥平面ABB1A1;由C1M⊥平面ABB1A1,AM?平面ABB1A1,知A1B⊥C1M,由AC1⊥A1B,AC1∩C1M=C1,知A1B⊥AM;由AM∥B1N,C1M∥CN,知平面AMC1∥平面CNB1
          解答:解:∵直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,C1M?平面A1B1C1,
          ∴C1M⊥AA1,
          ∵B1C1=A1C1,M是A1B1的中點(diǎn),
          ∴C1M⊥A1B1,
          ∵AA1∩A1B1=A1,
          ∴C1M⊥平面ABB1A1,故①正確.
          對于②:∵C1M⊥平面ABB1A1,AM?平面ABB1A1,
          ∴A1B⊥C1M,
          ∵AC1⊥A1B,AC1∩C1M=c1
          ∴A1B⊥平面AC1M,
          ∵AM?平面AC1M,
          ∴A1B⊥AM,即②正確;
          ③:∵由題設(shè)得到AM∥B1N,C1M∥CN,
          ∴平面AMC1∥平面CNB1,故③正確.
          故答案為:①②③.
          點(diǎn)評(píng):本題考查直線與平面垂直、直線與直線垂直、平面與平面平等的判斷,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意空間思維能力的培養(yǎng).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中點(diǎn).
          (Ⅰ)求證:CD⊥AB′;
          (Ⅱ)求二面角A′-AB′-C的大。
          (Ⅲ)求直線B′D與平面AB′C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
          2
          a
          ,則AB′與側(cè)面AC′所成角的大小為
          30°
          30°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=a (a為常數(shù)).
          (Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
          (Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個(gè)三棱錐的體積;若不是定值,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
          (1)求證:A′B⊥面AB′C;
          (2)求二面角B-B′C-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點(diǎn)D是BC的中點(diǎn),∠ACB=90°,AC=BC=1,AA′=2,
          (1)欲過點(diǎn)A′作一截面與平面AC'D平行,問應(yīng)當(dāng)怎樣畫線,寫出作法,并說明理由;
          (2)求異面直線BA′與 C′D所成角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案