日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如果不等式
          x+a
          ≥x
          (a>0)的解集為{x|m≤x≤n},且|m-n|=2a,則a的值等于(  )
          分析:根據(jù)題意,不等式的解集應(yīng)該是曲線y=
          x+a
          位于直線y=x上方的部分所對應(yīng)的自變量的值,觀察其橫坐標(biāo),可得x=n是方程
          x+a
          =x的一個解,且|m-n|=n+a=2a,建立方程組,解之可得a的值.
          解答:解:根據(jù)不等式
          x+a
          ≥x作出圖象如下:
          曲線y=
          x+a
          位于直線y=x上方的部分為符合題意的圖象,
          觀察其橫坐標(biāo)可得區(qū)間[m,n]即為[-a,n],
          ∴由|m-n|=2a得:n-(-a)=2a,
          ∴n=a.
          n+a
          =n,將n=a代入得:
          2a
          =a,
          解之得:a=2,
          故選B.
          點(diǎn)評:本題考查不等式的解集求法和不等式的基本性質(zhì),體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x),g(x),h(x),如果存在實數(shù)a,b,使得h(x)=af(x)+bg(x),那么稱h(x)為f(x),g(x)的線性生成函數(shù).
          (1)給出如下兩組函數(shù),試判斷h(x)是否分別為f(x),g(x)的線性生成函數(shù),并說明理由.
          第一組:f(x)=sinx,g(x)=cosx,h(x)=sin(x+
          π
          3
          )
          ;
          第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
          (2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數(shù)為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;
          (3)已知f(x)=x,g(x)=
          1
          x
          ,x∈[1,10]
          的線性生成函數(shù)h(x),其中a>0,b>0.若h(x)≥b對a∈[1,2]恒成立,求實數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
          (1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
          第一組:數(shù)學(xué)公式;
          第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
          (2)設(shè)數(shù)學(xué)公式,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
          (3)設(shè)數(shù)學(xué)公式,取a>0,b>0生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如果不等式|x-a|<1成立的充分非必要條件是0<x<1,則實數(shù)a的取值范圍是

          A.0<a<1                                         B.0≤a≤1

          C.a<0或a>1                                      D.a≤0或a≥1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
          (1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
          第一組:
          第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
          (2)設(shè),生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
          (3)設(shè),取a>0,b>0生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案