已知橢圓的離心率為
,以原點(diǎn)
為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)
相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)與橢圓
相交于
、
兩點(diǎn),且
,試判斷
的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.
(1).(2)為定值
.
解析試題分析:(1)由已知建立方程組,求得.
(2)設(shè),由
得
,根據(jù)
,得
.應(yīng)用韋達(dá)定理得到
根據(jù),
,
,
得到,從而有
,計(jì)算得到
試題解析:(1)由題意知,∴
,即
,
又,∴
,
故橢圓的方程為. 4分
(2)設(shè),由
得
,
,
.
7分
,
,
,
,
12分
考點(diǎn):橢圓的幾何性質(zhì),直線(xiàn)與橢圓的位置關(guān)系,函數(shù)的單調(diào)性與最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知,
,
,
分別是橢圓
的四個(gè)頂點(diǎn),△
是一個(gè)邊長(zhǎng)為2的等邊三角形,其外接圓為圓
.
(1)求橢圓及圓
的方程;
(2)若點(diǎn)是圓
劣弧
上一動(dòng)點(diǎn)(點(diǎn)
異于端點(diǎn)
,
),直線(xiàn)
分別交線(xiàn)段
,橢圓
于點(diǎn)
,
,直線(xiàn)
與
交于點(diǎn)
.
(ⅰ)求的最大值;
(ⅱ)試問(wèn):,
兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)拋物線(xiàn):
的準(zhǔn)線(xiàn)與
軸交于點(diǎn)
,焦點(diǎn)為
;橢圓
以
和
為焦點(diǎn),離心率
.設(shè)
是
與
的一個(gè)交點(diǎn).
(1)求橢圓的方程.
(2)直線(xiàn)過(guò)
的右焦點(diǎn)
,交
于
兩點(diǎn),且
等于
的周長(zhǎng),求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓過(guò)點(diǎn)
,且離心率為
.斜率為
的直線(xiàn)
與橢圓
交于A、B兩點(diǎn),以
為底邊作等腰三角形,頂點(diǎn)為
.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn)
,且它的離心率
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線(xiàn)
交橢圓于
兩點(diǎn),若橢圓上一點(diǎn)
滿(mǎn)足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左右焦點(diǎn)分別為
、
,短軸兩個(gè)端點(diǎn)為
、
,且四邊形
是邊長(zhǎng)為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)
滿(mǎn)足
,連接
,交橢圓于點(diǎn)
,證明:
為定值;
(3)在(2)的條件下,試問(wèn)軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得以
為直徑的圓恒過(guò)直線(xiàn)
的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線(xiàn)
相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)右焦點(diǎn)作斜率為
的直線(xiàn)
交曲線(xiàn)
于
、
兩點(diǎn),且
,又點(diǎn)
關(guān)于原點(diǎn)
的對(duì)稱(chēng)點(diǎn)為點(diǎn)
,試問(wèn)
、
、
、
四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的右焦點(diǎn)與拋物線(xiàn)
的焦點(diǎn)重合,過(guò)
且于x軸垂直的直線(xiàn)與橢圓交于S,T,與拋物線(xiàn)交于C,D兩點(diǎn),且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點(diǎn),若過(guò)點(diǎn)M(2,0)的直線(xiàn)與橢圓相交于不同兩點(diǎn)A和B,且滿(mǎn)足
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率e=
,一條準(zhǔn)線(xiàn)方程為x=
(1)求橢圓C的方程;
(2)設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.
①當(dāng)直線(xiàn)OG的傾斜角為60°時(shí),求△GOH的面積;
②是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線(xiàn)GH相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com