日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)的離心率為
          3
          2
          ,短軸一個端點(diǎn)到上焦點(diǎn)的距離為2.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)Q(-2,0)作直線l與橢圓C相交于A、B兩點(diǎn),直線m是過點(diǎn)(-
          4
          17
          ,0)
          ,且以
          a
          =(0,1)為方向向量的直線,設(shè)N是直線m上一動點(diǎn),滿足
          ON
          =
          OA
          +
          OB
          (O為坐標(biāo)原點(diǎn)).問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.
          分析:(Ⅰ)由已知得
          c
          a
          =
          3
          2
          a2=4
          ,由此能求出橢圓的標(biāo)準(zhǔn)方程.
          (Ⅱ)由已知可得直線m:x=-
          4
          17
          ,設(shè)N(-
          4
          17
          ,t)
          ,設(shè)直線l:y=k(x+2),A(x1,y1),B(x2,y2),由此能夠?qū)С龃嬖?span id="xthmfzn" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">y=±
          1
          2
          (x+2)使得四邊形OANB為矩形.
          解答:解:(Ⅰ)由已知得
          c
          a
          =
          3
          2
          a2=b2+c2=22=4
          ?
          a=2
          c=
          3
          b=1
            ∴橢圓的標(biāo)準(zhǔn)方程為
          y2
          4
          +x2=1
          ;
          (Ⅱ)由已知可得直線m:x=-
          4
          17
          ,設(shè)N(-
          4
          17
          ,t)

          設(shè)直線l:y=k(x+2),A(x1,y1),B(x2,y2
          y=k(x+2)
          y2
          4
          +x2=1
          ?(4+k2)x2+4k2x+4k2-4=0
          △>0?-
          2
          2
          3
          <k<
          2
          2
          3
          x1+x2=-
          4k2
          4+k2
          =-
          4
          17
          ?k=±
          1
          2

          此時
          OA
          OB
          =0
          ,所以存在y=±
          1
          2
          (x+2)
          使得四邊形OANB為矩形.
          點(diǎn)評:本題考查直線和圓錐曲線的位置關(guān)系,解題時要認(rèn)真審題,注意提高運(yùn)算能力和解題技巧.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
          3
          c,0)三點(diǎn),其中c>0.
          (1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
          (2)已知橢圓
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)
          (其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè).
          ①求橢圓離心率的取值范圍;
          ②若A、B、M、O、C、D(O為坐標(biāo)原點(diǎn))依次均勻分布在x軸上,問直線MF1與直線DF2的交點(diǎn)是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
          3
          c,0)三點(diǎn),其中c>0.
          (1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
          (2)已知橢圓
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)(其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè),求橢圓離心率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          y2
          a2
          +
          x2
          b2
          =1 (a>b>0)
          的離心率e滿足3, 
          1
          e
          , 
          4
          9
          成等比數(shù)列,且橢圓上的點(diǎn)到焦點(diǎn)的最短距離為2-
          3
          .過點(diǎn)(2,0)作直線l交橢圓于點(diǎn)A,B.
          (1)若AB的中點(diǎn)C在y=4x(x≠0)上,求直線l的方程;
          (2)設(shè)橢圓中心為,問是否存在直線l,使得的面積滿足2S△AOB=|OA|•|OB|?若存在,求出直線AB的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)的上下焦點(diǎn)分別為F1,F(xiàn)1,短軸兩個端點(diǎn)為P,P1,且四邊形F1PF2P1是邊長為2的正方形.
          (1)求橢圓方程;
          (2)設(shè)△ABC,AC=2
          3
          ,B為橢圓
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)在x軸上方的頂點(diǎn),當(dāng)AC在直線y=-1上運(yùn)動時,求△ABC外接圓的圓心Q的軌跡E的方程;
          (3)過點(diǎn)F(0,
          3
          2
          )作互相垂直的直線l1l2,分別交軌跡E于M,N和R,Q.求四邊形MRNQ的面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:南通模擬 題型:解答題

          平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
          3
          c,0)三點(diǎn),其中c>0.
          (1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
          (2)已知橢圓
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)
          (其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè).
          ①求橢圓離心率的取值范圍;
          ②若A、B、M、O、C、D(O為坐標(biāo)原點(diǎn))依次均勻分布在x軸上,問直線MF1與直線DF2的交點(diǎn)是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案