日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

          1)證明: 平面;

          2)設(shè) ,三棱錐的體積 ,求A到平面PBC的距離。

          【答案】1)證明見解析 2 到平面的距離為

          【解析】試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點(diǎn),ABx軸,ADy軸,APz軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離

          試題解析:(I)設(shè)BDAC于點(diǎn)O,連結(jié)EO。

          因?yàn)?/span>ABCD為矩形,所以OBD的中點(diǎn)。

          EPD的中點(diǎn),所以EO∥PB

          EO平面AEC,PB平面AEC

          所以PB∥平面AEC。

          II

          ,可得.

          由題設(shè)易知,所以

          ,

          所以到平面的距離為

          2:等體積法

          ,可得.

          由題設(shè)易知,BC

          假設(shè)到平面的距離為d,

          又因?yàn)?/span>PB=

          所以

          又因?yàn)?/span>(),

          所以

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱錐底面中,.回答下面的問題.

          1)在側(cè)面中能否作一條直線段使其與平行?如果能,請寫出作圖過程并給出證明;如果不能,請說明理由.

          2)在側(cè)面中能否作一條直線段使其與平行?如果能,請寫出作圖過程并給出證明;如果不能,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)在一個(gè)周期內(nèi)的簡圖如圖所示,則函數(shù)的解析式為___________,方程的實(shí)根個(gè)數(shù)為__________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】本題滿分14分如圖,已知橢圓,其左右焦點(diǎn)為,過點(diǎn)的直線交橢圓兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.

          1求橢圓的方程;

          2的面積為,為原點(diǎn)的面積為.試問:是否存在直線,使得?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為是參數(shù)),圓的極坐標(biāo)方程為.

          (Ⅰ)求直線的普通方程與圓的直角坐標(biāo)方程;

          (Ⅱ)設(shè)曲線與直線的交于,兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)的時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下表:

          超過1小時(shí)

          不超過1小時(shí)

          20

          8

          12

          m

          1)求m,n;

          2)能否有95多的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān)?

          3)以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)調(diào)查6名學(xué)生,試估計(jì)6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的人數(shù).

          附:

          0.050

          0.010

          0.001

          k

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)對(duì)某市工薪階層關(guān)于樓市限購令的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們月收入的頻數(shù)分布及對(duì)樓市限購令贊成人數(shù)如下表.

          月收入(單位百元)

          頻數(shù)

          5

          10

          15

          10

          5

          5

          贊成人數(shù)

          4

          8

          12

          5

          2

          1

          (1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為月收入以5500元為分界點(diǎn)對(duì)樓市限購令的態(tài)度有差異;

          月收入不低于55百元的人數(shù)

          月收入低于55百元的人數(shù)

          合計(jì)

          贊成

          a=______________

          c=______________

          ______________

          不贊成

          b=______________

          d=______________

          ______________

          合計(jì)

          ______________

          ______________

          ______________

          (2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。

          參考公式:,其中.

          參考值表:

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,函數(shù).

          (1)若有極小值且極小值為0,求的值;

          (2)當(dāng)時(shí),,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于定義在上的函數(shù),若存在距離為的兩條直線,使得對(duì)任意的都有,則稱函數(shù)有一個(gè)寬為的通道.給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度為1的函數(shù)由__________ (寫出所有正確的序號(hào)).

          查看答案和解析>>

          同步練習(xí)冊答案