日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE,M是AB的中點(diǎn).建立適當(dāng)?shù)目臻g直角坐標(biāo)系,解決下列問題:
          (1)求證:CM⊥EM;
          (2)求CM與平面CDE所成角的大小.

          【答案】分析:(1)分別以CB,CA所在直線為x,y軸,過點(diǎn)C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系C-xyz,寫出要用的點(diǎn)的坐標(biāo),寫出線對應(yīng)的向量的坐標(biāo),根據(jù)兩個向量的數(shù)量積等于0,得到結(jié)論.
          (2)寫出直線的方向向量,設(shè)出平面的法向量,根據(jù)法向量與平面上的向量垂直,數(shù)量積等于0,得到兩個關(guān)于法向量坐標(biāo)的關(guān)系式,寫出其中一個法向量,根據(jù)法向量與直線的夾角得到結(jié)果.
          解答:(1)分別以CB,CA所在直線為x,y軸,過點(diǎn)C且與平面ABC垂直的直線為z軸,
          建立如圖所示的空間直角坐標(biāo)系C-xyz
          設(shè)AE=a,則M(a,-a,0),E(0,-2a,a),
          所以

          ∴CM⊥EM.
          (2),
          設(shè)平面CDE的法向量=(x,y,z),
          則有令y=1,則=(-2,1,2),,
          ∴直線CM與平面CDE所成的角為45°
          點(diǎn)評:本題考查利用空間向量的語言來描述線面之間的關(guān)系,本題解題的關(guān)鍵是正確建立坐標(biāo)系,寫出要用的點(diǎn)的坐標(biāo).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在如圖所示的幾何體中,四邊形ABCD、ADEF、ABGF均為全等的直角梯形,且BC∥AD,AB=AD=2BC.
          (Ⅰ)求證:CE∥平面ABGF;
          (Ⅱ)求二面角G-CE-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在如圖所示的幾何體中,平行四邊形ABCD的頂點(diǎn)都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
          2
          a,DP∥AM,且AM=
          1
          2
          DP,E,F(xiàn)分別為BP,CP的中點(diǎn).
          (I)證明:EF∥平面ADP;
          (II)求三棱錐M-ABP的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•朝陽區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
          13
          ,且M是BD的中點(diǎn).
          (Ⅰ)求證:EM∥平面ADF;
          (Ⅱ)在EB上是否存在一點(diǎn)P,使得∠CPD最大?若存在,請求出∠CPD的正切值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
          (Ⅰ)求證:AC⊥平面FBC;
          (Ⅱ)線段ED上是否存在點(diǎn)Q,使平面EAC⊥平面QBC?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中點(diǎn). 
          (1)求證:CM⊥平面ABDE;
          (2)求幾何體的體積.

          查看答案和解析>>

          同步練習(xí)冊答案