日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知函數f(x)=sinωx+cosωx的最小正周期為π,x∈R,ω>0是常數.
          (1)求ω的值;
          (2)若f(+)= , θ∈(0,),求sin2θ.

          【答案】解:(1)∵f(x)=sinωx+cosωx=2sin(ωx+),
          ∵函數f(x)=sinωx+cosωx的最小正周期為π,
          ∴T=,解得:ω=2.
          (2)∵f(+)=2sin[2(+)+]=2sin(θ+)=2cosθ=,
          ∴cosθ=,
          ∵θ∈(0,),
          ∴sin=
          ∴sin2θ=2sinθcosθ=2×x=
          【解析】(1)由兩角和的正弦公式化簡解析式可得f(x)=2sin(ωx+),由已知及周期公式即可求ω的值.
          (2)由已知及三角函數中的恒等變換應用可得f(+)=2cosθ= , 可得cosθ,由θ∈(0,),可得sinθ,sin2θ的值.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】經過對K2的統(tǒng)計量的研究,得到了若干個觀測值,當K2≈6.706時,我們認為兩分類變量A、B(  )

          A. 67.06%的把握認為AB有關系 B. 99%的把握認為AB有關系

          C. 0.010的把握認為AB有關系 D. 沒有充分理由說明AB有關系

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】某玩具生產公司每天計劃生產衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產一個衛(wèi)兵需分鐘,生產一個騎兵需分鐘,生產一個傘兵需分鐘,已知總生產時間不超過小時,若生產一個衛(wèi)兵可獲利潤元,生產一個騎兵可獲利潤元,生產一個傘兵可獲利潤元.

          (1)用每天生產的衛(wèi)兵個數與騎兵個數表示每天的利潤(元);

          (2)怎么分配生產任務才能使每天的利潤最大,最大利潤是多少?

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數f(x)=cos ,g(x)=exf(x),其中e為自然對數的底數.
          (1)求曲線y=g(x)在點(0,g(0))處的切線方程;
          (2)若對任意 時,方程g(x)=xf(x)的解的個數,并說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】關于函數f(x)=sin(x﹣)sin(x+),有下列命題:
          ①此函數可以化為f(x)=﹣sin(2x+);
          ②函數f(x)的最小正周期是π,其圖象的一個對稱中心是( , 0);
          ③函數f(x)的最小值為﹣ , 其圖象的一條對稱軸是x=
          ④函數f(x)的圖象向右平移個單位后得到的函數是偶函數;
          ⑤函數f(x)在區(qū)間(﹣ , 0)上是減函數.
          其中所有正確的命題的序號個數是( 。
          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,已知正方形和矩形所在的平面互相垂直, ,,M是線段的中點.

          Ⅰ)求證:∥平面;

          Ⅱ)求證: 平面;

          () 點到面的距離.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】將函數f(x)=cos(ωx+φ)(ω>0,|φ|< )的圖象上的每一點的縱坐標不變,橫坐標縮短為原來的一半,再將圖象向右平移 個單位長度得到函數y=sinx的圖象.
          (1)直接寫出f(x)的表達式,并求出f(x)在[0,π]上的值域;
          (2)求出f(x)在[0,π]上的單調區(qū)間.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數.

          1)求在區(qū)間上的最大值;

          2)若過點存在3條直線與曲線相切,求t的取值范圍;

          3)問過點分別存在幾條直線與曲線相切?(只需寫出結論)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】函數f(x)=(x2﹣2x﹣3)的單調減區(qū)間是( 。
          A.(3,+∞)
          B.(1,+∞)
          C.(﹣∞,1)
          D.(﹣∞,﹣1)

          查看答案和解析>>

          同步練習冊答案