日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)f(x)=ax2+bx+c(a≠0).對(duì)任意非零實(shí)數(shù)a,b,c,m,n,p,關(guān)于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是( 。
          分析:根據(jù)函數(shù)f(x)的對(duì)稱性,因?yàn)閙[f(x)]2+nf(x)+p=0的解應(yīng)滿足y1=ax2+bx+c,y2=ax2+bx+c,進(jìn)而可得到方程m[f(x)]2+nf(x)+p=0的根,應(yīng)關(guān)于對(duì)稱軸x=-
          b
          2a
          對(duì)稱,對(duì)于D中4個(gè)數(shù)無(wú)論如何組合都找不到滿足條件的對(duì)稱軸,故解集不可能是D.
          解答:解:∵f(x)=ax2+bx+c的對(duì)稱軸為直線x=-
          b
          2a

          設(shè)方程m[f(x)]2+nf(x)+p=0的解為y1,y2
          則必有y1=ax2+bx+c,y2=ax2+bx+c
          那么從圖象上看,y=y1,y=y2是一條平行于x軸的直線
          它們與f(x)有交點(diǎn)
          由于對(duì)稱性,則方程y1=ax2+bx+c的兩個(gè)解x1,x2要關(guān)于直線x=-
          b
          2a

          也就是說(shuō)2(x1+x2)=-
          2b
          a

          同理方程y2=ax2+bx+c的兩個(gè)解x3,x4也要關(guān)于直線x=-
          b
          2a
          對(duì)稱
          那就得到2(x3+x4)=-
          2b
          a

          在C中,可以找到對(duì)稱軸直線x=2.5,
          也就是1,4為一個(gè)方程的解,2,3為一個(gè)方程的解
          所以得到的解的集合可以是{1,2,3,4}
          而在D中,{1,4,16,64},中間兩個(gè)數(shù)4,16的對(duì)稱軸為10,而最大值和最小值1,64的對(duì)稱軸為
          65
          2
          ,
          即函數(shù)的圖象不是軸對(duì)稱圖形,
          故選D.
          點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì)--對(duì)稱性,二次函數(shù)在高中已經(jīng)作為一個(gè)工具來(lái)解決有關(guān)問(wèn)題,在解決不等式、求最值時(shí)用途很大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)f(x)=ax2+bx(a,b是常數(shù),且a≠0),f(2)=0,且方程f(x)=x有兩個(gè)相等的實(shí)數(shù)根.
          (1)求f(x)的解析式;
          (2)當(dāng)x∈[0,3]時(shí),求函數(shù)f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過(guò)點(diǎn)(0,2a+3),且在x=1處的切線垂直于y軸.
          (Ⅰ)用a分別表示b和c;
          (Ⅱ)當(dāng)bc取得最大值時(shí),寫出y=f(x)的解析式;
          (Ⅲ)在(Ⅱ)的條件下,g(x)滿足
          43
          f(x)-6
          =(x-2)g(x)(x>2),求g(x)的最大值及相應(yīng)x值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=ax2+ln(x+1).
          (Ⅰ)當(dāng)a=
          1
          4
          時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍;
          (Ⅲ)求證:(1+
          2
          2×3
          )×(1+
          4
          3×5
          )×(1+
          8
          5×9
          )…(1+
          2n
          (2n-1+1)(2n+1)
          )<e
          (其中,n∈N*,e是自然對(duì)數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知實(shí)數(shù)a,b,c(a≠0)滿足
          a
          m+2
          +
          b
          m+1
          +
          c
          m
          =0(m>0)
          ,對(duì)于函數(shù)f(x)=ax2+bx+c,af(
          m
          m+1
          )
          與0的大小關(guān)系是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,F(x)=
          f(x)(x>0)
          -f(x)(x<0)

          (1)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
          (2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
          (3)設(shè)m•n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.

          查看答案和解析>>