日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          1)當(dāng)時(shí),求的最小值;

          2)若,討論的單調(diào)性;

          3)若,上的最小值,求證:

          【答案】1;(2)當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增.當(dāng)時(shí)單調(diào)遞減,,單調(diào)遞增;當(dāng)時(shí), 單調(diào)遞增;(3)見(jiàn)解析

          【解析】

          1)當(dāng)時(shí),,利用導(dǎo)數(shù)法求最值.

          2)根據(jù).求導(dǎo),分,即分類討論求解.

          3)根據(jù)(2)的結(jié)論,當(dāng),單調(diào)遞減,在單調(diào)遞增.得到.要證,只需求得最大值即可.

          1)當(dāng)時(shí),

          當(dāng)時(shí),,當(dāng)時(shí),

          所以當(dāng)時(shí),取最小值

          2

          ,

          ,即時(shí),則由

          當(dāng)時(shí),;當(dāng)時(shí),;

          單調(diào)遞減,在單調(diào)遞增.

          ,則由,

          構(gòu)造函數(shù),則.由,得

          單調(diào)遞減,在單調(diào)遞增.,

          (當(dāng)且僅當(dāng)時(shí)等號(hào)成立).

          ,,單調(diào)遞增.

          ,當(dāng)時(shí),;當(dāng)時(shí),;

          單調(diào)遞減,在,單調(diào)遞增;

          綜上:當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增.

          當(dāng)時(shí)單調(diào)遞減,在,單調(diào)遞增;

          當(dāng)時(shí), 單調(diào)遞增.

          3)證明:由(2)知,若,單調(diào)遞減,在單調(diào)遞增.

          ,

          ,

          所以上單調(diào)遞減,,

          存在唯一的,使得,

          單調(diào)遞增,在單調(diào)遞減,

          故當(dāng)時(shí),,

          當(dāng)時(shí),

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx3,gx)=alnx2xaR.

          1)討論gx)的單調(diào)性;

          2)是否存在實(shí)數(shù)a,使不等式fxgx)恒成立?如果存在,求出a的值;如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).其中常數(shù)是自然對(duì)數(shù)的底數(shù).

          1)若,求上的極大值點(diǎn);

          2)(i)證明上單調(diào)遞增;

          ii)求關(guān)于x的方程上的實(shí)數(shù)解的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近年來(lái),我國(guó)電子商務(wù)行業(yè)迎來(lái)了蓬勃發(fā)展的新機(jī)遇,但是電子商務(wù)行業(yè)由于缺乏監(jiān)管,服務(wù)質(zhì)量有待提高.某部門(mén)為了對(duì)本地的電商行業(yè)進(jìn)行有效監(jiān)管,調(diào)查了甲、乙兩家電商的某種同類產(chǎn)品連續(xù)十天的銷(xiāo)售額(單位:萬(wàn)元),得到如下莖葉圖:

          7

          5

          10

          7

          9

          5

          3

          11

          5

          7

          8

          8

          6

          12

          3

          5

          4

          2

          13

          2

          6

          9

          1

          14

          8

          1)根據(jù)莖葉圖判斷甲、乙兩家電商對(duì)這種產(chǎn)品的銷(xiāo)售誰(shuí)更穩(wěn)定些?

          2)為了綜合評(píng)估本地電商的銷(xiāo)售情況,從甲、乙兩家電商十天的銷(xiāo)售數(shù)據(jù)中各抽取兩天的銷(xiāo)售數(shù)據(jù),其中銷(xiāo)售額不低于120萬(wàn)元的天數(shù)分別記為,令,求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的焦距和長(zhǎng)半軸長(zhǎng)都為2.過(guò)橢圓的右焦點(diǎn)作斜率為的直線與橢圓相交于,兩點(diǎn).

          1)求橢圓的方程;

          2)設(shè)點(diǎn)是橢圓的左頂點(diǎn),直線分別與直線相交于點(diǎn),.求證:以為直徑的圓恒過(guò)點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          )求的單調(diào)區(qū)間;

          )若都屬于區(qū)間,,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在三棱錐S-ABC中,側(cè)棱SA,SBSC兩兩成等角,且長(zhǎng)度分別為ab,c,設(shè)二面角S-BC-AS-ACB,S-AB-C的大小為,若α,βγ的大小關(guān)系是(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩人進(jìn)行象棋比賽,采取五局三勝制(不考慮平局,先贏得三場(chǎng)的人為獲勝者,比賽結(jié)束).根據(jù)前期的統(tǒng)計(jì)分析,得到甲在和乙的第一場(chǎng)比賽中,取勝的概率為0.5,受心理方面的影響,前一場(chǎng)比賽結(jié)果會(huì)對(duì)甲的下一場(chǎng)比賽產(chǎn)生影響,如果甲在某一場(chǎng)比賽中取勝,則下一場(chǎng)取勝率提高0.1,反之,降低0.1.則甲以3:1取得勝利的概率為( )

          A.0.162B.0.18C.0.168D.0.174

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓,設(shè)點(diǎn)為圓軸負(fù)半軸的交點(diǎn),點(diǎn)為圓上一點(diǎn),且滿足的中點(diǎn)在軸上.

          1)當(dāng)變化時(shí),求點(diǎn)的軌跡方程;

          2)設(shè)點(diǎn)的軌跡為曲線,、為曲線上兩個(gè)不同的點(diǎn),且在、兩點(diǎn)處的切線的交點(diǎn)在直線上,證明:直線過(guò)定點(diǎn),并求此定點(diǎn)坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案