日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))

          無意愿

          有意愿

          總計(jì)

          40

          5

          總計(jì)

          25

          80

          (1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);

          (2)若表中無意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.

          附參考公式及數(shù)據(jù): ,其中.

          0.40

          0.25

          0.10

          0.010

          0.005

          0.001

          0.708

          1.323

          2.706

          6.635

          7.879

          10.828

          【答案】(1)答案見解析;(2) .

          【解析】試題分析:

          (1)由題意結(jié)合所給的表可得,計(jì)算的觀測(cè)值,則有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān).

          (2)由題意列出所有可能的事件,然后結(jié)合古典概型公式可得這2個(gè)同學(xué)是同年級(jí)的概率是.

          試題解析:

          (1)由表得

          的觀測(cè)值,

          ∴99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān).

          (2)記3個(gè)大三同學(xué)分別為,2個(gè)大四同學(xué)分別為,則從中抽取2個(gè)的基本事件有: 共10個(gè),其中抽取的2個(gè)是同一年級(jí)的基本事件有4個(gè),則所求概率為或直接求.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問題,在火車站分別隨機(jī)調(diào)研了名女性或名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.

          (1)完成下列 列聯(lián)表:

          喜歡旅游

          不喜歡旅游

          估計(jì)

          女性

          男性

          合計(jì)

          (2)能否在犯錯(cuò)誤概率不超過的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.

          附:

          參考公式:

          ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐的底面為矩形,D的中點(diǎn),AC平面BCC1B1

          (Ⅰ)證明:AB//平面CDB1;

          (Ⅱ)若AC=BC=1,BB1=,

          (1)求BD的長;

          (2)求B1D與平面ABB1所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

          (Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

          (Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點(diǎn),直線交與, ,求, .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某港口有一個(gè)泊位,現(xiàn)統(tǒng)計(jì)了某月100艘輪船在該泊位?康臅r(shí)間(單位:小時(shí)),如果?繒r(shí)間不足半小時(shí)按半小時(shí)計(jì)時(shí),超過半小時(shí)不足1小時(shí)按1小時(shí)計(jì)時(shí),以此類推,統(tǒng)計(jì)結(jié)果如表:

          ?繒r(shí)間

          2.5

          3

          3.5

          4

          4.5

          5

          5.5

          6

          輪船數(shù)量

          12

          12

          17

          20

          15

          13

          8

          3

          (Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r(shí)間為小時(shí),求的值;

          (Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?小時(shí),且在一晝夜的時(shí)間段中隨機(jī)到達(dá),求這兩艘輪船中至少有一艘在?吭摬次粫r(shí)必須等待的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)).

          (Ⅰ)若曲線在點(diǎn)處的切線與軸垂直,求的值;

          (Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍;

          (Ⅲ)證明:當(dāng)時(shí), .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為,右頂點(diǎn)為,設(shè)離心率為,且滿足,其中為坐標(biāo)原點(diǎn).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)過點(diǎn)(0,1)的直線與橢圓交于兩點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1是否存在實(shí)數(shù)使函數(shù)是奇函數(shù)?并說明理由;

          21的條件下,當(dāng)時(shí) 恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,以上頂點(diǎn)和右焦點(diǎn)為直徑端點(diǎn)的圓與直線相切.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)對(duì)于直線和點(diǎn),橢圓上是否存在不同的兩點(diǎn)關(guān)于直線對(duì)稱,且,若存在實(shí)數(shù)的值,若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案