日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若雙曲線的兩條漸近線的方程為:y=±
          3
          2
          x
          .一個(gè)焦點(diǎn)為F1(-
          26
          ,0)
          ,那么它的兩條準(zhǔn)線間的距離是( 。
          分析:先根據(jù)雙曲線的漸近線方程焦點(diǎn)坐標(biāo)設(shè)出雙曲線的方程,求出雙曲線中的c,再根據(jù)雙曲線的焦點(diǎn)坐標(biāo)求出參數(shù)的值,得到雙曲線的方程,再由雙曲線方程求出準(zhǔn)線方程,最后計(jì)算兩準(zhǔn)線間距離.
          解答:解:∵雙曲線的兩條漸近線的方程為:y=±
          3
          2
          x
          ,一個(gè)焦點(diǎn)為F1(-
          26
          ,0)
          ,
          ∴設(shè)雙曲線方程為
          x2
          -
          y2
          =1
          (λ>0)
          則雙曲線中a2=4λ,b2=9λ,
          ∴c2=a2+b2=4λ+9λ=13λ
          又∵一個(gè)焦點(diǎn)為F1(-
          26
          ,0)
          ,
          ∴c=
          26

          ∴13λ=26,λ=2.
          ∴雙曲線方程為
          x2
          8
          -
          y2
          18
          =1

          ∴準(zhǔn)線方程為x=±
          a2
          c
          8
          26
          =
          4
          26
          13

          ∴兩準(zhǔn)線間距離為
          8
          13
          26

          故選A
          點(diǎn)評(píng):本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì),待定系數(shù)法求雙曲線的標(biāo)準(zhǔn)方程,雙曲線的漸近線、準(zhǔn)線、焦點(diǎn)坐標(biāo)間的關(guān)系
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若雙曲線的兩條漸近線方程為x-2y=0和x+2y=0,且該雙曲線還經(jīng)過點(diǎn)P(
          7
          ,-
          2
          )
          ,則該雙曲線的實(shí)軸長(zhǎng)為( 。
          A、1B、2C、4D、8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線的頂點(diǎn)與焦點(diǎn)分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點(diǎn)與頂點(diǎn),若雙曲線的兩條漸近線與橢圓的交點(diǎn)構(gòu)成的四邊形恰為正方形,則橢圓的離心率為
          2
          2
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•佛山一模)已知雙曲線的頂點(diǎn)與焦點(diǎn)分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的焦點(diǎn)與頂點(diǎn),若雙曲線的兩條漸近線與橢圓的交點(diǎn)構(gòu)成的四邊形恰為正方形,則橢圓的離心率為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:選擇題

          已知雙曲線的頂點(diǎn)與焦點(diǎn)分別是橢圓的焦點(diǎn)與頂點(diǎn),若雙曲線的兩條漸近線與橢圓的交點(diǎn)構(gòu)成的四邊形恰為正方形,則橢圓的離心率為(    )

          A.         B.         C.       D.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案