日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓數(shù)學(xué)公式的左頂點(diǎn)為A,右焦點(diǎn)為F,且過點(diǎn)(1,數(shù)學(xué)公式),橢圓C的焦點(diǎn)與曲線數(shù)學(xué)公式的焦點(diǎn)重合.
          (1)求橢圓C的方程;
          (2)過點(diǎn)F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點(diǎn),點(diǎn)M、N的縱坐標(biāo)分別為m、n.請問以線段MN為直徑的圓是否經(jīng)過x軸上的定點(diǎn)?若存在,求出定意的坐標(biāo),并證明你的結(jié)論;若不存在,請說明理由.

          解:(1)由題意,橢圓C的焦點(diǎn)為(-1,0),(1,0),且過點(diǎn)(1,),
          由橢圓的定義,可得2a=4,∴a=2
          ∴b2=a2-1=3
          ∴橢圓C的方程為
          (2)假設(shè)以線段MN為直徑的圓經(jīng)過x軸上的定點(diǎn),由(1)知F(1,0)
          ①當(dāng)PQ⊥x軸時(shí),P,Q的橫坐標(biāo)均為1,將x=1代入橢圓方程可得y=±
          不妨令P(1,),Q(1,-
          由A,P,M三點(diǎn)共線,得,∴m=3
          同理可得n=-3
          ∴以線段MN為直徑的圓的方程為(x-4)2+y2=9
          令y=0,可得x=1或x=7
          ∴以線段MN為直徑的圓經(jīng)過x軸上的定點(diǎn)(1,0),(7,0);
          ②當(dāng)直線PQ與x軸不垂直時(shí),∵A(-2,0),M(4,m),∴
          ∴直線AM的方程為y=
          代入橢圓方程,整理可得(27+m2)x2+4m2x+4m2-108=0
          設(shè)P(x1,y1),Q(x2,y2),則-2與x1是上述方程的兩個(gè)實(shí)根
          ∴-2x1=,∴x1=,∴y1=
          ∴P(,
          同理可得Q(
          ==
          ∵P,F(xiàn),Q三點(diǎn)共線,∴
          ∴(m-n)(9+mn)=0
          ∵m≠n,∴9+mn=0,∴mn=-9
          ∴以線段MN為直徑的圓的方程為(x-4)2+(y-2=
          將(1,0)代入上式的坐標(biāo),可得(1-4)2+(0-2=-mn++(2=
          ∴以線段MN為直徑的圓的方程經(jīng)過點(diǎn)(1,0)
          同理(7,0)也在圓上,
          綜上,以線段MN為直徑的圓經(jīng)過x軸上的定點(diǎn)(1,0),(7,0).
          分析:(1)由題意,橢圓C的焦點(diǎn)為(-1,0),(1,0),且過點(diǎn)(1,),由橢圓的定義,可得a的值,從而可求橢圓C的方程;
          (2)假設(shè)以線段MN為直徑的圓經(jīng)過x軸上的定點(diǎn),由(1)知F(1,0),分類討論:①當(dāng)PQ⊥x軸時(shí),以線段MN為直徑的圓的方程為(x-4)2+y2=9,可得以線段MN為直徑的圓經(jīng)過x軸上的定點(diǎn)(1,0),(7,0);②當(dāng)直線PQ與x軸不垂直時(shí),可得以線段MN為直徑的圓的方程為(x-4)2+(y-2=,驗(yàn)證(1,0),(7,0)在圓上
          點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查恒過定點(diǎn)問題,考查分類討論的數(shù)學(xué)思想,綜合性強(qiáng).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市盱眙縣新馬中學(xué)高三(上)第八周內(nèi)測數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

          已知橢圓的左頂點(diǎn)為A,上頂點(diǎn)為B,右焦點(diǎn)為F.設(shè)線段AB的中點(diǎn)為M,若,則該橢圓離心率的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省宜昌一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

          如圖,已知橢圓的左頂點(diǎn)為A,左焦點(diǎn)為F,上頂點(diǎn)為B,若∠BAO+∠BFO=90°,則該橢圓的離心率是   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省深圳市高級(jí)中學(xué)等三校高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

          如圖,已知橢圓的左頂點(diǎn)為A,左焦點(diǎn)為F,上頂點(diǎn)為B,若∠BAO+∠BFO=90°,則該橢圓的離心率是   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市海門中學(xué)高三(上)開學(xué)檢測數(shù)學(xué)試卷(解析版) 題型:解答題

          已知橢圓的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,且圓C:過A,F(xiàn)2兩點(diǎn).
          (1)求橢圓標(biāo)準(zhǔn)的方程;
          (2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上;
          (3)設(shè)橢圓的上頂點(diǎn)為Q,證明:PQ=PF1+PF2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年山東省棗莊市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          已知橢圓的左頂點(diǎn)為A,右焦點(diǎn)為F,且過點(diǎn)(1,),橢圓C的焦點(diǎn)與曲線的焦點(diǎn)重合.
          (1)求橢圓C的方程;
          (2)過點(diǎn)F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點(diǎn),點(diǎn)M、N的縱坐標(biāo)分別為m、n.請問以線段MN為直徑的圓是否經(jīng)過x軸上的定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不存在,請說明理由.
          (3)在(2)問的條件下,求以線段MN為直徑的圓的面積的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案