日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=2x2+1(x∈R),且對于任意的x恒有f(x)≥f(x0),則x0=
          0
          0
          分析:f(x)=2x2+1(x∈R),知f′(x)=2x•2 x2+1•ln2.令f′(x)=2x•2 x2+1•ln2=0,得x=0.列表討論知函數(shù)f(x)=2x2+1(x∈R)在x=0處取得最小值f(0)=2.由此能求出x0的值.
          解答:解:∵f(x)=2x2+1(x∈R),
          ∴f′(x)=2x•2 x2+1•ln2,
          令f′(x)=2x•2 x2+1•ln2=0,得x=0.
          列表,討論
           x  (-∞,0)  0 (0,+∞) 
           f′(x) -  0 +
           f(x)  極小值
          ∴函數(shù)f(x)=2x2+1(x∈R)在x=0處取得極小值f(0)=2.
          ∵函數(shù)f(x)=2x2+1(x∈R)只有一個極小值,故這個極小值就是函數(shù)f(x)=2x2+1(x∈R)的最小值.
          ∵函數(shù)f(x)=2x2+1(x∈R)對于任意的x恒有f(x)≥f(x0),
          ∴f(x)≥f(x)min=f(0),
          ∴x0=0.
          故答案為:0.
          點(diǎn)評:本題考查函數(shù)恒成立問題的應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2-xx+1
          ;
          (1)求出函數(shù)f(x)的對稱中心;
          (2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
          (3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2-x-1,x≤0
          x
          ,x>0
          ,則f[f(-2)]=
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2(sin2x+
          3
          2
          )cosx-sin3x

          (1)求函數(shù)f(x)的值域和最小正周期;
          (2)當(dāng)x∈[0,2π]時,求使f(x)=
          3
          成立的x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2-
          ax+1
          (a∈R)
          的圖象過點(diǎn)(4,-1)
          (1)求a的值;
          (2)求證:f(x)在其定義域上有且只有一個零點(diǎn);
          (3)若f(x)+mx>1對一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2-2cosx
          +
          2-2cos(
          3
          -x)
          ,x∈[0,2π],則當(dāng)x=
          3
          3
          時,函數(shù)f(x)有最大值,最大值為
          2
          3
          2
          3

          查看答案和解析>>

          同步練習(xí)冊答案