日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標(biāo)系xOy中,橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1、F2,其中右焦點(diǎn)F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
          5
          3

          (1)求橢圓C1的方程;
          (2)設(shè)E(0,
          1
          2
          )
          ,是否存在斜率為k (k≠0)的直線l與橢圓C1交于A、B兩點(diǎn),且|AE|=|BE|?若存在,求k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
          分析:(1)根據(jù)右焦點(diǎn)F2也是拋物線C2:y2=4x的焦點(diǎn),且|MF2|=
          5
          3
          ,可求出F2,根據(jù)拋物線的定義可求得點(diǎn)M的橫坐標(biāo),并代入拋物線方程,可求其縱坐標(biāo);把點(diǎn)M代入橢圓方程,以及焦點(diǎn)坐標(biāo),解方程即可求得橢圓C1的方程;
          (2)設(shè)AB中點(diǎn)P(x0,y0)和直線l的方程為y=kx+m(k≠0),由|AE|=|BE|等價(jià)于PE⊥AB,聯(lián)立直線和橢圓方程,消去y,得到關(guān)于x的一元二次方程,利用韋達(dá)定理和△>0即可求得k的取值范圍.
          解答:解:(1)由已知|MF2|=xm+1=
          5
          3

          xm=
          2
          3
          代入y2=4x 得ym=
          2
          6
          3
          ,
          M(
          2
          3
          ,
          2
          6
          3
          )
          代入橢圓方程
          4
          9a2
          +
          24
          9b2
          =1

          又1=a2-b2 解得a2=4,b2=3,
          故橢圓C1的方程為
          x2
          4
          +
          b2
          3
          =1

          (2)設(shè)直線l的方程為y=kx+m(k≠0),
          代入
          x2
          4
          +
          y2
          3
          =1
          得(3+4k2)x2+8kmx+4m2-12=0.
          x1+x2=
          -8km
          3+4k2
          ,x1x2=
          4m2-12
          3+4k2

          直線l與橢圓C,有兩個(gè)不同公共點(diǎn)的充要條件是△=(8km)2-4(3+4k2)(4m2-12)>0,
          即4k2-m2+3>0(*)
          設(shè)AB中點(diǎn)P(x0,y0),則x0=
          x1+x2
          2
          =
          -4km
          3+4k2
          ,y0=kx0+m=
          3m
          3+4k2
          ,
          |AE|=|BE|等價(jià)于PE⊥AB,
          EP
          AB
          =0
          ,
          EP
          =(x0y0-
          1
          2
          )=(-
          4km
          3+4k2
          ,
          3m
          3+4k2
          -
          1
          2
          )

          (1,k)為
          AB
          的一個(gè)方向向量,故-
          4km
          3+4k2
          +
          3mk
          3+4k2
          -
          1
          2
          k=0,∴m=
          -(3+4k2)
          2
          ,
          代入(*)得3+4k2-
          (3+4k2)2
          4
          >0
          ,∵3+4k2≠0,∴4-(3+4k2)>0,故k2
          1
          4
          -
          1
          2
          <k<
          1
          2

          因此存在合條件的直線l,其斜率k的范圍為(-
          1
          2
          ,0)∪(0,
          1
          2
          )
          點(diǎn)評(píng):此題是個(gè)難題.考查拋物線的定義和簡(jiǎn)單的幾何性質(zhì),待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程,以及直線和橢圓相交中的有關(guān)中點(diǎn)弦的問(wèn)題,綜合性強(qiáng),特別是問(wèn)題(2)的設(shè)問(wèn)形式,增加了題目的難度,注意直線與圓錐曲線相交,△>0.體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的思想方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在直角坐標(biāo)系xOy中,橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
          5
          3

          (Ⅰ)求C1的方程;
          (Ⅱ)平面上的點(diǎn)N滿(mǎn)足
          MN
          =
          MF1
          +
          MF2
          ,直線l∥MN,且與C1交于A,B兩點(diǎn),若
          OA
          OB
          =0
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
          OP
          OQ
          垂直,求x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
          3

          (1)求線段PQ中點(diǎn)M的軌跡C的方程;
          (2)R1,R2是曲線C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問(wèn):是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
          x=tcosθ
          y=1+tsinθ
          (t
          為參數(shù))
          (I)求圓M的圓心的軌跡C的參數(shù)方程,并說(shuō)明它表示什么曲線;
          (II)求直線l被軌跡C截得的最大弦長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率e=
          2
          2
          ,左右兩個(gè)焦分別為F1,F(xiàn)2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對(duì)稱(chēng)點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案