日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=a(lnx-x)(a∈R).
          (I)討論函數(shù)f(x)的單調(diào)性;
          (II)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,函數(shù)g(x)=x3+x2[
          m2
          +f′(x)]
          在區(qū)間(2,3)上總存在極值,求實(shí)數(shù)m的取值范圍.
          分析:(I)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,首先求出極值點(diǎn),同時(shí)注意函數(shù)的定義域;
          (II)已知函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,根據(jù)導(dǎo)數(shù)與直線斜率的關(guān)系可得f′(2)=1,將問(wèn)題轉(zhuǎn)化為二元一次方程有解問(wèn)題,從而求解;
          解答:解:(I)易知f(x)的定義域?yàn)椋?,+∞),f′(x)=
          a(1-x)
          x
          ,
          當(dāng)a<0時(shí),令f′(x)=
          a(1-x)
          x
          >0,即
          1-x
          x
          <0,解得增區(qū)間為(1,+∞),
          減區(qū)間為(0,1);
          當(dāng)a>0時(shí),令f′(x)=
          a(1-x)
          x
          >0,即
          1-x
          x
          >0,解得增區(qū)間為(0,1),減區(qū)間為(1,+∞),
          當(dāng)a=0時(shí),f(x)不是單調(diào)函數(shù);
          (II)∵函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,
          ∴f′(2)=
          a(1-2)
          2
          =tan45°=1,
          ∴a=-2,
          f′(x)=
          -2(1-x)
          x
          =
          2(x-1)
          x
          ,
          g(x)=x3+x2
          m
          2
          +
          2(x-1)
          x
          )=x3+(
          m
          2
          +2)x2-2x,
          g′(x)=3x2+(m+4)x-2,
          ∵g′(0)=-2<0,要使函數(shù)g(x)=x3+x2[
          m
          2
          +f′(x)]在區(qū)間(2,3)上總存在極值,
          只需
          g′(2)<0
          g′(3)>0

          解得-
          37
          3
          <m<-9;
          點(diǎn)評(píng):此題利用導(dǎo)數(shù)研究函數(shù)單調(diào)區(qū)間,以及導(dǎo)數(shù)所表示的幾何意義,將問(wèn)題轉(zhuǎn)化為方程有解問(wèn)題,是一道中檔題;
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案