日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=-x2+2x+3.

          (1)畫出f(x)的圖像;

          (2)根據(jù)圖像寫出函數(shù)f(x)的單調(diào)區(qū)間;

          (3)利用定義證明函數(shù)f(x)=-x2+2x+3在區(qū)間(-∞,1]上是增函數(shù);

          (4)當(dāng)函數(shù)f(x)在區(qū)間(-∞,m]上是增函數(shù)時(shí),求實(shí)數(shù)m的取值范圍.

          思路分析:本題主要考查二次函數(shù)的圖像、函數(shù)的單調(diào)性及其綜合應(yīng)用.(1)畫二次函數(shù)的圖像時(shí),重點(diǎn)確定開口方向和對稱軸的位置;(2)根據(jù)單調(diào)性的幾何意義,寫出單調(diào)區(qū)間;(3)證明函數(shù)的增減性,先在區(qū)間上取x1<x2,然后作差f(x1)-f(x2),判斷這個(gè)差的符號即可;(4)討論對稱軸和區(qū)間[m,+∞)的相對位置.

          解:(1)函數(shù)f(x)=-x2+2x+3的圖像如下圖所示.

          (2)由函數(shù)f(x)的圖像,得在直線x=1的左側(cè)圖像是上升的,在直線x=1的右側(cè)圖像是下降的,故函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,1],單調(diào)遞減區(qū)間是(1,+∞).

          (3)設(shè)x1、x2∈(-∞,1],且x1<x2,則有

          f(x1)-f(x2)=(-x12+2x1+3)-(-x22+2x2+3)

          =(x22-x12)+2(x1-x2)

          =(x1-x2)(2-x1-x2).

          ∵x1、x2∈(-∞,1],且x1<x2,

          ∴x1-x2<0,x1+x2<2.

          ∴2-x1-x2>0.

          ∴f(x1)-f(x2)<0.

          ∴f(x1)<f(x2).

          ∴函數(shù)f(x)=-x2+2x+3在區(qū)間(-∞,1]上是增函數(shù).

          (4)函數(shù)f(x)=-x2+2x+3的對稱軸是直線x=1,在對稱軸的左側(cè)是增函數(shù),那么當(dāng)區(qū)間(-∞,m]位于對稱軸的左側(cè)時(shí)滿足題意,則有m≤1,即實(shí)數(shù)m的取值范圍是(-∞,1].

          綠色通道:討論二次函數(shù)的單調(diào)性時(shí),要結(jié)合二次函數(shù)的圖像,通過確定對稱軸和單調(diào)區(qū)間的相對位置來解決.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3x+5,(x≤0)
          x+5,(0<x≤1)
          -2x+8,(x>1)
          ,
          求(1)f(
          1
          π
          ),f[f(-1)]
          的值;
          (2)若f(a)>2,則a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=
          (1-3a)x+10ax≤7
          ax-7x>7.
          是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
          A、(
          1
          3
          ,1)
          B、(
          1
          3
          ,
          1
          2
          ]
          C、(
          1
          3
          6
          11
          ]
          D、[
          6
          11
          ,1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          |x-1|-a
          1-x2
          是奇函數(shù).則實(shí)數(shù)a的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2x-2-x2x+2-x

          (1)求f(x)的定義域與值域;
          (2)判斷f(x)的奇偶性并證明;
          (3)研究f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x-1x+a
          +ln(x+1)
          ,其中實(shí)數(shù)a≠1.
          (1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
          (2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊答案