日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a>0,函數(shù)fx)=ax-bx2.

          (1)當(dāng)b>0時(shí),若對任意x∈R都有fx)≤1,證明a≤2;

          (2)當(dāng)b>1時(shí),證明對任意x∈[0,1],|fx)|≤1的充要條件是b-1≤a≤2;

          (3)當(dāng)0<b≤1時(shí),討論對任意x∈[0,1],|fx)|≤1的充要條件.

          (1)證明:依題意設(shè)對任意x∈R都有fx)≤1,?

          fx)=-bx-2+,?

          f)=b≤1.

          x∈R,fxmax=.

          b>0,x∈R,fx)≤1,?

          ≤1,∴a≤2.

          (2)證明:仿照(1)的方法可證明.

          (3)解析:∵a>0,0<b≤1時(shí),對任意x∈[0,1],有fx)=ax-bx2≥-b≥-1,即fx)≥-1;

          fx)≤1f(1)≤1a-b≤1,即a≤1+b.而a≤1+bfx)≤(1+bx-bx2≤1,即fx)≤1.

          ∴當(dāng)a>0,0<b≤1時(shí),對任意x∈[0,1], |fx)|≤1的充要條件是a≤1+b.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是(  )
          A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ln(2-x)+ax.
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ln(2-x)+ax.
          (1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)求函數(shù)f(x)在[0,1]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
          (Ⅰ)當(dāng)a=
          1
          8
          時(shí)
          ①求f(x)的單調(diào)區(qū)間;
          ②證明:存在x0∈(2,+∞),使f(x0)=f(
          3
          2
          );
          (Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
          ln3-ln2
          5
          ≤a≤
          ln2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=
          |x-2a|
          x+2a
          在區(qū)間[1,4]上的最大值等于
          1
          2
          ,則a的值為
           

          查看答案和解析>>

          同步練習(xí)冊答案