日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓G:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          6
          3
          ,右焦點為(2
          2
          ,0).斜率為1的直線l與橢圓G交于A,B兩點,以AB為底邊作等腰三角形,頂點為P(-3,2).
          (Ⅰ)求橢圓G的方程;
          (Ⅱ)求△PAB的面積.
          (Ⅰ)∵橢圓G:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          6
          3
          ,右焦點為(2
          2
          ,0),
          c
          a
          =
          6
          3
          c=2
          2
          ,解得a=2
          3
          ,
          ∴b=
          12-8
          =2,
          ∴橢圓G的方程為
          x2
          12
          +
          y2
          4
          =1

          (Ⅱ)設(shè)l:y=x+b,
          代入
          x2
          12
          +
          y2
          4
          =1
          ,得4x2+6bx+3b2-12=0,
          根據(jù)韋達(dá)定理xA+xB=-
          3b
          2
          xAxB=
          3b2-12
          4
          ,
          ∴yA+yB=
          b
          2
          ,
          設(shè)M為AB的中點,則M(-
          3b
          4
          ,
          b
          4
          ),AB的中垂線的斜率k=-1,
          ∴AB的中垂線:x+y+
          b
          2
          =0,將P(-3,2)代入,得b=2,
          ∴l(xiāng):x-y+2=0,根據(jù)弦長公式可得AB=3
          2
          ,d=
          3
          2
          ,
          ∴S△PAB=
          1
          2
          ×3
          2
          ×
          3
          2
          =
          9
          2
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若AB為拋物線y2=2px(p>0)的動弦,且|AB|=a(a>2p),則AB的中點M到y(tǒng)軸的最近距離是( 。
          A.
          a
          2
          B.
          p
          2
          C.
          a+p
          2
          D.
          a-p
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的一個焦點為F(1,0),且過點(2,0).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AF與BN交于點M.
          (。┣笞C:點M恒在橢圓C上;
          (ⅱ)求△AMN面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知拋物線C:y2=2px(p>0)的焦點為F,過F且斜率為1的直線l與拋物線C相交于A,B兩點,若線段AB的中點到拋物線C準(zhǔn)線的距離為4,則p的值為( 。
          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知離心率為
          3
          2
          的橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>o)過點M(2,1),O為坐標(biāo)原點,平行于OM的直線l交橢圓于C不同的兩點A,B.
          (1)求橢圓的C方程.
          (2)證明:若直線MA,MB的斜率分別為k1、k2,求證:k1+k2=0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,已知點P(a,b),A(x1,y1),B(x2,y2)均在拋物線y2=2px(p>0)上,PA,PB與x軸分別交于C,D兩點,且PC=PD,則y1+y2的值為…( 。
          A.-2aB.2bC.2pD.-2b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為e=
          3
          2
          ,且過點(
          3
          1
          2

          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)直線l:y=kx+m(k≠0,m>0)與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知兩點M(2,0)、N(-2,0),平面上動點P滿足由|
          MN
          |•|
          MP
          |+
          MN
          MP
          =0

          (1)求動點P的軌跡C的方程.
          (2)是否存在實數(shù)m使直線x+my-4=0(m∈R)與曲線C交于A、B兩點,且OA⊥OB?若存在,求出m的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(b>a>0)
          ,O為坐標(biāo)原點,離心率e=2,點M(
          5
          ,
          3
          )
          在雙曲線上.
          (1)求雙曲線的方程;
          (2)若直線l與雙曲線交于P,Q兩點,且
          OP
          OQ
          =0
          .問:
          1
          |OP|2
          +
          1
          |OQ|2
          是否為定值?若是請求出該定值,若不是請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案