【題目】在每年的3月份,濮陽市政府都會發(fā)動市民參與到植樹綠化活動中去林業(yè)管理部門為了保證樹苗的質(zhì)量都會在植樹前對樹苗進行檢測,現(xiàn)從甲、乙兩種樹苗中各抽測了株樹苗,量出它們的高度如下(單位:厘米),
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設(shè)抽測的株甲種樹苗高度平均值為
,將這
株樹苗的高度依次輸人,按程序框(如圖)進行運算,問輸出的
大小為多少?并說明
的統(tǒng)計學(xué)意義,
【答案】(1)見解析;(2)見解析
【解析】分析:(1)畫出莖葉圖,通過圖能判斷甲,乙兩種樹苗的平均高度、分散情況、中位數(shù)的值.
(2)直接利用均值與方差公式求解,說明幾何意義即可.
詳解:(1)莖葉圖:
統(tǒng)計結(jié)論:(答案不唯一,任意兩個即可)
①甲種樹苗的平均高度小于乙種樹苗的平均高度;
②甲種樹苗比乙種樹苗長得整齊;
③甲種樹苗的中位數(shù)為,乙種樹苗的中位數(shù)為
;
④甲種樹苗的高度基本上是對稱的,而且大多數(shù)集中在平均數(shù)附近,乙種樹苗的高度分布比較分散.
(2)根據(jù)十個數(shù)據(jù)求得:,
由框圖可求得,
表示
株甲種樹苗高度的方差.
越小,表示長得越整齊,
值越大,表示長得越參差不齊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平直角坐標系中,已知點
,
(1)在軸的正半軸上求一點
,使得以
為直徑的圓過
點,并求該圓的方程;
(2)在(1)的條件下,點在線段
內(nèi),且
平分
,試求
點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
為菱形,側(cè)面
為等邊三角形,且側(cè)面
底面
,
,
分別為
,
的中點.
(Ⅰ)求證: .
(Ⅱ)求證:平面平面
.
(Ⅲ)側(cè)棱上是否存在點
,使得
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為
,橢圓的右頂點為A.
(1)求該橢圓的方程:
(2)過點D( ,﹣
)作直線PQ交橢圓于兩個不同點P,Q,求證:直線AP,AQ的
斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點,
和一動點
,給出下列結(jié)論:
①若,則點
的軌跡是橢圓;
②若,則點
的軌跡是雙曲線;
③若,則點
的軌跡是圓;
④若,則點
的軌跡關(guān)于原點對稱;
⑤若直線與
斜率之積等于
,則點
的軌跡是橢圓(除長軸兩端點).
其中正確的是__________(填序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù)
.
(1)若,求
的取值范圍;
(2)討論的單調(diào)性;
(3)當(dāng)時,討論
在區(qū)間
內(nèi)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,四邊形
是菱形,
,又
平面
,
點是棱
的中點,
在棱
上,且
.
(1)證明:平面平面
;
(2)若平面
,求四棱錐
的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com