日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線a、b、c以及平面α、β,給出下列命題:
          ①若a∥α且b∥α,則a∥b;      
          ②若α∥β,c⊥α,則c⊥β;
          ③若a⊥b,a⊥α,則b∥α;
          ④若α⊥β,a∥α,則a⊥β
          ⑤若a⊥c,b⊥c,則a∥b或a、b異面或a、b相交
          其中正確命題的序號是
          ②⑤
          ②⑤
          (把所有正確命題的序號都填上).
          分析:根據(jù)線面平行的幾何特征及線線位置關系的定義,可判斷①,根據(jù)一條直線垂直于兩個平行平面中的一個,也垂直于另一個,可判斷②;根據(jù)a⊥b,a⊥α時,可能b?α,可判斷③;根據(jù)面面垂直及線面平行的幾何特征及線面垂直的判定方法,可判斷④;根據(jù)線線垂直的幾何特征,及空間中直線與直線位置關系的定義,可判斷⑤.
          解答:解:若a∥α且b∥α,則a與b可能平行,可能相交,也可能異面,故①錯誤;      
          若α∥β,c⊥α,因為一條直線垂直于兩個平行平面中的一個,也垂直于另一個,則c⊥β,故②正確;
          若a⊥b,a⊥α,則b∥α或b?α,故③錯誤;
          若α⊥β,a∥α,則a與β可能平行,可能相交(包括垂直),也可能線在面內,故④錯誤;
          若a⊥c,b⊥c,則a∥b或a、b異面或a、b相交,故⑤正確;
          故答案為:②⑤
          點評:本題考查的知識點是空間直線與直線之間的位置關系,直線與平面之間的位置關系,平面與平面之間的位置關系,熟練掌握空間線面之間的位置關系的定義,幾何特征及判定方法是解答的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (1)選修4-2:矩陣與變換
          已知矩陣A=
          33
          cd
          ,若矩陣A屬于特征值6的一個特征向量為
          a1
          =
          1
          1
          ,屬于特征值1的一個特征向量為
          a2
          =
          3
          -2
          ,求矩陣A.
          (2)選修4-4:坐標與參數(shù)方程
          以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為psin(θ-
          π
          3
          )=6,圓C的參數(shù)方程為
          x=10cosθ
          y=10sinθ
          ,(θ為參數(shù)),求直線l被圓C截得的弦長.
          (3)選修4-5:不等式選講
          已知實數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•徐州模擬)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內作答,
          若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內切于點T,P是外圓⊙O上任意一點,連PT交⊙O1于點M,PN與內圓⊙O1相切,切點為N.求證:PN:PM為定值.
          B.選修4-2:矩陣與變換
          已知矩陣M=
          21
          34

          (1)求矩陣M的逆矩陣;
          (2)求矩陣M的特征值及特征向量;
          C.選修4-2:矩陣與變換
          在平面直角坐標系x0y中,求圓C的參數(shù)方程為
          x=-1+rcosθ
          y=rsinθ
          為參數(shù)r>0),以O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
          π
          4
          )=2
          2
          .若直線l與圓C相切,求r的值.
          D.選修4-5:不等式選講
          已知實數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
          4
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
          (1)選修4-2:矩陣與變換
          已知矩陣M=
          7-6
          4-3
          ,向量
          ξ 
          =
          6
          5

          (I)求矩陣M的特征值λ1、λ2和特征向量
          ξ
          1
          ξ2
          ;
          (II)求M6
          ξ
          的值.
          (2)選修4-4:坐標系與參數(shù)方程
          在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為
          x=2cosα
          y=sinα
          (α為參數(shù))
          .以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ-
          π
          4
          )=2
          2

          (Ⅰ)求直線l的直角坐標方程;
          (Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
          (3)選修4-5:不等式選講
          (Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
          1
          3
          (a+b+c)2
          ;    
          (Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (1)選修4-2:矩陣與變換
          已知矩陣A=
          33
          cd
          ,若矩陣A屬于特征值6的一個特征向量為
          a1
          =
          1
          1
          ,屬于特征值1的一個特征向量為
          a2
          =
          3
          -2
          ,求矩陣A.
          (2)選修4-4:坐標與參數(shù)方程
          以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為psin(θ-
          π
          3
          )=6,圓C的參數(shù)方程為
          x=10cosθ
          y=10sinθ
          ,(θ為參數(shù)),求直線l被圓C截得的弦長.
          (3)選修4-5:不等式選講
          已知實數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年福建省協(xié)作校聯(lián)考高三(上)期末數(shù)學試卷(解析版) 題型:解答題

          (1)選修4-2:矩陣與變換
          已知矩陣,若矩陣A屬于特征值6的一個特征向量為,屬于特征值1的一個特征向量為,求矩陣A.
          (2)選修4-4:坐標與參數(shù)方程
          以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為psin()=6,圓C的參數(shù)方程為,(θ為參數(shù)),求直線l被圓C截得的弦長.
          (3)選修4-5:不等式選講
          已知實數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

          查看答案和解析>>

          同步練習冊答案