日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,則x1+x2值為   
          【答案】分析:第一個方程:lgx=3-x.第二個方程,10x=3-x,lg(3-x)=x.注意第二個方程,如果做變量代換y=3-x,則lgy=3-y,其實(shí)是與第一個方程一樣的.那么,如果x1,x2是兩個方程的解,則必有x1=3-x2,也就是說,x1+x2=3.
          解答:解:∵x+lgx=3,∴l(xiāng)gx=3-x.
          ∵x+10x=3,∴10x=3-x,
          ∴l(xiāng)g(3-x)=x.如果做變量代換y=3-x,則lgy=3-y,
          ∵x1是方程x+lgx=3的根,x2是方程x+10x=3的根,
          ∴x1=3-x2,∴x1+x2=3.
          答案:3.
          點(diǎn)評:本題考查對數(shù)函數(shù)的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-ax+4+2lnx
          (I)當(dāng)a=5時,求f(x)的單調(diào)遞減函數(shù);
          (Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時切線l的方程;
          (Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
          π
          3
          時,f(x)取得極小值
          π
          3
          -
          3

          (1)求a,b的值;
          (2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
          ①直線l與曲線S相切且至少有兩個切點(diǎn);
          ②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
          試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
          (3)記h(x)=
          1
          8
          [5x-f(x)]
          ,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ax+bsinx,當(dāng)數(shù)學(xué)公式時,f(x)取得極小值數(shù)學(xué)公式
          (1)求a,b的值;
          (2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
          ①直線l與曲線S相切且至少有兩個切點(diǎn);
          ②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
          試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
          (3)記數(shù)學(xué)公式,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=x2-ax+4+2lnx
          (I)當(dāng)a=5時,求f(x)的單調(diào)遞減函數(shù);
          (Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時切線l的方程;
          (Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:《圓錐曲線》2012-2013學(xué)年廣東省十三大市高三(上)期末數(shù)學(xué)試卷匯編(理科)(解析版) 題型:解答題

          如圖,已知點(diǎn)M(x,y)是橢圓C:=1上的動點(diǎn),以M為切點(diǎn)的切線l與直線y=2相交于點(diǎn)P.
          (1)過點(diǎn)M且l與垂直的直線為l1,求l1與y軸交點(diǎn)縱坐標(biāo)的取值范圍;
          (2)在y軸上是否存在定點(diǎn)T,使得以PM為直徑的圓恒過點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,說明理由.
          (參考定理:若點(diǎn)Q(x1,y1)在橢圓,則以Q為切點(diǎn)的橢圓的切線方程是:

          查看答案和解析>>

          同步練習(xí)冊答案