日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F1、F2分別是雙曲線L:
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1作斜率為2的直線l交雙曲線L的左支上方于點(diǎn)P,若∠F1PF2為直角,則此雙曲線的離心率等于
          5
          5
          分析:先得出過(guò)點(diǎn)F1且斜率為2的直線l的方程,再利用垂直關(guān)系得出直線PF1的方程,求出它們的交點(diǎn)坐標(biāo)即為P的坐標(biāo),利用P在雙曲線上,其坐標(biāo)適合方程,將點(diǎn)的坐標(biāo)代入雙曲線方程得出關(guān)于a,b,c的關(guān)系式,最后把等量關(guān)系轉(zhuǎn)化為用a,c來(lái)表示即可求雙曲線C的離心率.
          解答:解:由題意得,過(guò)點(diǎn)F1作斜率為2的直線l為y=2(x+c),
          又因∠F1PF1為直角,∴直線PF1的斜率為-
          1
          2
          ,直線PF1的方程為:y=-
          1
          2
          (x-c),
          兩直線聯(lián)立,解得交點(diǎn)P的坐標(biāo)為(-
          3c
          5
          4c
          5
          ),如圖.
          將P的坐標(biāo)代入雙曲線方程,得
          (-
          3c
          5
          )
          2
          a2
          -
          (
          4c
          5
          )
          2
          b2
          =1
          ,
          即9b2c2-16a2c2=25a2b2,又b2=c2-a2,
          代入得:9(c2-a2)c2-16a2c2=25a2(c2-a2).
          化簡(jiǎn)得:9c4-50a2c2+25a4=0.
          解得
          c
          a
          =
          5

          故答案為:
          5
          點(diǎn)評(píng):本題是對(duì)雙曲線性質(zhì)中離心率的考查.求離心率,只要找到a,c之間的等量關(guān)系即可求.是基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
          x25
          +y2=1
          的左、右焦點(diǎn)F1,F(xiàn)2關(guān)于直線x+y-2=0的對(duì)稱點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
          (Ⅰ)求圓C的方程;
          (Ⅱ)設(shè)過(guò)點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長(zhǎng)分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•青島二模)已知F1、F2分別是雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的左、右焦點(diǎn),P為雙曲線右支上的一點(diǎn),
          PF2
          F1F2
          ,且|
          PF1
          |=
          2
          |
          PF2
          |
          ,則雙曲線的離心率為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知F1,F(xiàn)2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1 (a>0, b>0)
          的左、右焦點(diǎn),過(guò)點(diǎn)F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
          1
          2
          ,F(xiàn)1也是拋物線C1:y2=-4x的焦點(diǎn).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過(guò)點(diǎn)F2的直線l交橢圓C于D,E兩點(diǎn),且2
          DF2
          =
          F2E
          ,點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)為G,求直線GD的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知F1,F(xiàn)2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的左,右焦點(diǎn),P是雙曲線的上一點(diǎn),若
          PF1
          PF2
          =0
          |
          PF1
          |•|
          PF2
          |=3ab
          ,則雙曲線的離心率是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案