日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-1:幾何證明選講
          如圖所示,已知PA與⊙O相切,A為切點,過點P的割線交圓于B、C兩點,弦CD∥AP,AD、BC相交于點E,F(xiàn)為CE上一點,且DE2=EF•EC.
          (1)求證:CE•EB=EF•EP;
          (2)若CE:BE=3:2,DE=3,EF=2,求PA的長.

          (I)證明:∵DE2=EF•EC,∠DEF公用,
          ∴△DEF∽△CED,
          ∴∠EDF=∠C.
          又∵弦CD∥AP,∴∠P=∠C,
          ∴∠EDF=∠P,∠DEF=∠PEA
          ∴△EDF∽△EPA.
          ,∴EA•ED=EF•EP.
          又∵EA•ED=CE•EB,
          ∴CE•EB=EF•EP;
          (II)∵DE2=EF•EC,DE=3,EF=2.
          ∴32=2EC,∴
          ∵CE:BE=3:2,∴BE=3.
          由(I)可知:CE•EB=EF•EP,∴,解得EP=,
          ∴BP=EP-EB=
          ∵PA是⊙O的切線,∴PA2=PB•PC,
          ,解得
          分析:(I)由已知可得△DEF∽△CED,得到∠EDF=∠C.由平行線的性質可得∠P=∠C,于是得到∠EDF=∠P,再利用對頂角的性質即可證明△EDF∽△EPA.于是得到EA•ED=EF•EP.利用相交弦定理可得EA•ED=CE•EB,進而證明結論;
          (II)利用(I)的結論可得BP=,再利用切割線定理可得PA2=PB•PC,即可得出PA.
          點評:熟練掌握相似三角形的判定和性質定理、平行線的性質、對頂角的性質、相交弦定理、切割線定理是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)選修4-1:幾何證明選講
          如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
          (1)求DE的長;
          (2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
          5
          ,求PD的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)A、選修4-1:幾何證明選講 
          如圖,PA與⊙O相切于點A,D為PA的中點,
          過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
          B.選修4-2:矩陣與變換
          已知矩陣M=
          12
          2x
          的一個特征值為3,求另一個特征值及其對應的一個特征向量.
          C.選修4-4:坐標系與參數(shù)方程
          在極坐標系中,圓C的方程為ρ=2
          2
          sin(θ+
          π
          4
          )
          ,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
          x=t
          y=1+2t
          (t為參數(shù)),判斷直線l和圓C的位置關系.
          D.選修4-5:不等式選講
          求函數(shù)y=
          1-x
          +
          4+2x
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          選修4-1:幾何證明選講
          自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•徐州模擬)選修4-1:幾何證明選講
          如圖,直線AB經(jīng)過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
          12
          ,圓O的半徑為3,求OA的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•南京二模)選修4-1:幾何證明選講
          如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結AD交圓O于點E,連結BE與AC交于點F,求證:AE2=EF•BE.

          查看答案和解析>>

          同步練習冊答案