日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{bn}(n∈N*)是遞增的等比數(shù)列,且b1+b3=5,b1b3=4.
          (1)求數(shù)列{bn}的通項公式;
          (2)若數(shù)列{an}的通項公式是an=n+2,數(shù)列{anbn}的前n項和為Sn,求Sn
          分析:由 b1+b3=5,b1b3=4及bn+1>bn,求b1,b3,根據(jù)等比中項可求b2,進而可求等比數(shù)列的公比及通項公式
          (2)由(1)可得anbn=(n+2)•2n-1,結(jié)合數(shù)列的特點考慮利用錯位相減求數(shù)列的和
          解答:解:(1)由 且b1+b3=5,b1b3=4. 知b1,b3是方程x2-5x+4=0的兩根b1,b3
          注意到bn+1>bn得b1=1,b3=4.…(2分)
          ∴b22=b1b3=4得b2=2.∴b1=1,b2=2,b3=4
          等比數(shù)列{bn}的公比為
          b2
          b1
          =2
          ,∴bn=b1qn-1=2n-1…(4分)
          (2)anbn=(n+2).2n-1
          所以Sn=3.20+4.21+5.22+…+(n+2).2n-1,…(6分)
          2Sn=3.21+4.22+5.23+…+(n+2).2n,…(8分)
          兩式相減得-Sn=3.20+21+22+…+2n-1-(n+2).2n
          =3+
          2(1-2n-1)
          1-2
          -(n+2).2n

          所以Sn=(n+1).2n-1.…(12分)
          點評:本題主要考查了等比數(shù)列的通項公式的應(yīng)用,數(shù)列求和的錯位相減的應(yīng)用,考查學(xué)生的運算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (文科) 在數(shù)列{an}中,如果對任意n∈N+都有
          an+2-an+1an+1-an
          =p(p為非零常數(shù)),則稱數(shù)列{an}為“等差比”數(shù)列,p叫數(shù)列
          {an}的“公差比”.
          (1)已知數(shù)列{an}滿足an}=-3•2n+5(n∈N+),判斷該數(shù)列是否為等差比數(shù)列?
          (2)已知數(shù)列{bn}(n∈N+)是等差比數(shù)列,且b1=2,b2=4公差比p=2,求數(shù)列{bn}的通項公式bn;
          (3)記Sn為(2)中數(shù)列{bn}的前n項的和,證明數(shù)列{Sn}(n∈N+)也是等差比數(shù)列,并求出公差比p的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{bn}前n項和為Sn,且b1=1,bn+1=
          13
          Sn
          (1)求b2,b3,b4的值;
          (2)求{bn}的通項公式;
          (3)求b2+b4+b6+…+b2n的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{bn}前n項和Sn=
          3
          2
          n2-
          1
          2
          n
          ,數(shù)列{an}滿足an3=4-(bn+2)(n∈N*),數(shù)列{cn}滿足cn=anbn
          (1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
          (2)求數(shù)列{cn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第五次月考理科數(shù)學(xué) 題型:解答題

          已知數(shù)列{bn}前n項和.?dāng)?shù)列{an}滿足,數(shù)列{cn}滿足

          (1)    求數(shù)列{an}和數(shù)列{bn}的通項公式;

          (2)    若對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.

           

           

          查看答案和解析>>

          同步練習(xí)冊答案