日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓E 經(jīng)過點(diǎn),離心率為.

          (1)求橢圓E的標(biāo)準(zhǔn)方程;

          (2)A1,A2分別是橢圓E的左、右頂點(diǎn),過點(diǎn)A2作直線lx軸垂直,點(diǎn)P是橢圓E上的任意一點(diǎn)(不同于橢圓E的四個(gè)頂點(diǎn)),連接PA1交直線l于點(diǎn)B,點(diǎn)Q為線段A2B的中點(diǎn),求證:直線PQ與橢圓E只有一個(gè)公共點(diǎn).

          【答案】(1) ;(2)證明見解析.

          【解析】試題分析:

          1)利用橢圓的離心率公式,將代入橢圓的方程,即可求得的值,即可得到橢圓的標(biāo)準(zhǔn)方程;

          2)利用點(diǎn)斜式,求得直線的方程,求得的中點(diǎn),利用中點(diǎn)公式求得的坐標(biāo),求得直線的斜率,直線的方程為,代入橢圓的方程,由,則直線與橢圓相切,即直線與橢圓的只有一個(gè)公共點(diǎn).

          試題解析:

          (1) 依題意得,

          ∴橢圓E的標(biāo)準(zhǔn)方程為1.

          (2)證明 設(shè)P(x0,y0)(x00x0±),

          則直線PA1的方程為y(x),

          x,得B,

          則線段A2B的中點(diǎn)Q,∴直線PQ的斜率kPQ.

          P是橢圓E上的點(diǎn),

          x3,代入①式,得kPQ=-,

          ∴直線PQ的方程為yy0=-(xx0)

          與橢圓方程聯(lián)立,得

          2x3y6,整理得x22x0xx0,

          Δ0,∴直線PQ與橢圓E相切.

          故直線PQ與橢圓E只有一個(gè)公共點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓的左頂點(diǎn),且點(diǎn)在橢圓上, 分別是橢圓的左、右焦點(diǎn)。過點(diǎn)作斜率為的直線交橢圓于另一點(diǎn),直線交橢圓于點(diǎn).

          1求橢圓的標(biāo)準(zhǔn)方程;

          2為等腰三角形,求點(diǎn)的坐標(biāo);

          3,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a,b分別是△ABC內(nèi)角AB的對(duì)邊,且bsin2Aacos Asin B,函數(shù)f(x)sin Acos2xsin2sin 2x,x.

          (1)A

          (2)求函數(shù)f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-5:不等式選講](10分)

          已知函數(shù)f(x)=2|x-2|+3|x+3|.

          (Ⅰ)解不等式:f(x)>15;

          (Ⅱ)若函數(shù)f(x)的最小值為m,正實(shí)數(shù)a,b滿足4a+25bm,求的最小值,并求出此時(shí)a,b的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=|2x+1|+|x+1|.

          (Ⅰ)求不等式f(x)≤8的解集;

          (Ⅱ)若不等式f(x)>|a-2|對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面五邊形ABCDE中,ABCE,且AE2,AEC60°,CDED,cosEDC.將△CDE沿CE折起,使點(diǎn)D移動(dòng)到P的位置,且AP,得到四棱錐PABCE.

          (1)求證:AP⊥平面ABCE

          (2)記平面PAB與平面PCE相交于直線l,求證:ABl.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) (其中e是自然對(duì)數(shù)的底數(shù),kR)

          (1)討論函數(shù)的單調(diào)性;

          (2)當(dāng)函數(shù)有兩個(gè)零點(diǎn)時(shí),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐PABC中,不能證明APBC的條件是(  )

          A. APPB,APPC

          B. APPB,BCPB

          C. 平面BPC⊥平面APC,BCPC

          D. AP⊥平面PBC

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)x2|xa|1,x∈R.

          (1)討論f(x)的奇偶性;

          (2)f(x)的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案