日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長為a的菱形,且∠ABC=60°,側(cè)棱長為,若經(jīng)過AB1且與BC1平行的平面交上底面線段A1C1于點(diǎn)E.
          (1)試求AE的長;
          (2)求證:A1C⊥平面AB1E.

          【答案】分析:(1)連接A1B交AB1于點(diǎn)O,連接OE,根據(jù)三角形中位線定理得OE∥BC1,根據(jù)直線與平面平行的判定定理即可得出BC1∥平面AB1E,從而有點(diǎn)E為線段A1C1的中點(diǎn),從而得出AE的長.
          (2)由題意有△A1B1C1為邊長為a的正三角形,再結(jié)合點(diǎn)E為線段A1C1的中點(diǎn)得B1E⊥A1C1又根據(jù)面面垂直的性質(zhì)得到B1E⊥A1C,最后利用在平面ACC1A1中由平幾知識結(jié)合線面垂直的判定可得A1C⊥平面AB1E.
          解答:解:(1)AE的長為:,即點(diǎn)E為線段A1C1的中點(diǎn).理由如下:
          連接A1B交AB1于點(diǎn)O,連接OE,則有OE∥BC1,
          又∵OE?平面AB1E,BC1?平面AB1E,∴BC1∥平面AB1E--------(6分)
          (2)由題意有△A1B1C1為邊長為a的正三角形,
          又點(diǎn)E為線段A1C1的中點(diǎn),∴B1E⊥A1C1
          又平面A1B1C1⊥平面ACC1A1,且平面A1B1C1∩平面ACC1A1=A1C1,
          ∴B1E⊥平面ACC1A1,∴B1E⊥A1C.------(10分)
          在平面ACC1A1中由平幾知識可得A1C⊥AE,又B1E∩AE=E,
          所以A1C⊥平面AB1E.------------------------(14分)
          點(diǎn)評:本題考查空間線面、線線垂直的判定及互相轉(zhuǎn)化,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖:直三棱柱ABC-A′B′C′的體積為V,點(diǎn)P、Q分別在側(cè)棱AA′和CC′上,AP=C′Q,則四棱錐B-APQC的體積為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,直三棱柱ABC-A1B1C1中,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2.
          (1)求證:AB1∥平面BC1D;
          (2)若四棱錐B-DAA1C1的體積為2,求二面角C-BC1-D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,∠ABC=45°,其側(cè)面展開圖是邊長為8的正方形.E、F分別是側(cè)棱AA1、CC1上的動(dòng)點(diǎn),AE+CF=8.
          (1)證明:BD⊥EF;
          (2)當(dāng)CF=
          14
          CC1時(shí),求面BEF與底面ABCD所成二面角的正弦值;
          (3)多面體AE-BCFB1的體積V是否為常數(shù)?若是,求這個(gè)常數(shù),若不是,求V的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•房山區(qū)二模)如圖,直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,且∠ABC=60°,E為棱CD的中點(diǎn).
          (Ⅰ)求證:A1C∥平面AED1;
          (Ⅱ)求證:平面AED1⊥平面CDD1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)E是棱C1C上一點(diǎn).
          (1)求證:無論E在任何位置,都有A1E⊥BD
          (2)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說明理由.
          (3)試確定點(diǎn)E的位置,使得四面體A1-BDE體積最大.并求出體積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案