日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知R是實數(shù)集,實數(shù)a、b都是常數(shù),是f(x)的導(dǎo)函數(shù),函數(shù)F(x)的定義域是
          (I)假設(shè)h(-1)=0,且f(x)在(-∞,+∞)上是單調(diào)函數(shù),求a、b的值;
          (II)假設(shè)h(x)是偶函數(shù),m+n>0,m•n<0,證明:F(m)+F(n)>0.
          【答案】分析:(Ⅰ)先求出h(x),得到F(x)的解析式,(I)h(-1)=0,且f(x)在(-∞,+∞)上是單調(diào)函數(shù),得出關(guān)于a、b的方程與不等式,求解即可;
          (II)h(x)是偶函數(shù)可得出b=0,由函數(shù)的解析式可以得出,F(xiàn)(x)是一個奇函數(shù),也是一個增函數(shù),又m+n>0,m•n<0不妨令m>0,n<0,結(jié)合函數(shù)的性質(zhì)進(jìn)行進(jìn)行證明即可
          解答:解:由題意h(x)=ax2+bx+1,故
          (I)h(-1)=0得a-b+1=0  ①
          f(x)在(-∞,+∞)上是單調(diào)函數(shù),a>0,故h(x)=ax2+bx+1≥0在R上恒成立,即b2-4a≤0②
          由①得b=a+1代入②得(a+1)2-4a=(a-1)2≤0,故a=1,∴b=2
          (II)∵h(yuǎn)(x)是偶函數(shù),,∴b=0,∴是一個奇函數(shù),
          又a>0,x>0,F(xiàn)(x)>1,x<0,F(xiàn)(x)<-1,故在定義域上也是一個增函數(shù),
          又m+n>0,m•n<0不妨令m>0,n<0,,則有m>-n>0,故有F(m)>F(-n)=-F(n),
          ∴F(m)+F(n)>0
          點評:本題研究函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,函數(shù)單調(diào)性的性質(zhì),比較抽象,解決問題的關(guān)鍵是把題設(shè)中的條件進(jìn)行正確轉(zhuǎn)化,判斷,解題中善于觀察敢于判斷也很關(guān)鍵,如在第二問的求解中,由偶函數(shù)的性質(zhì)得出b=0,進(jìn)而化簡了F(x),能馬上看出這個分段函數(shù)的性質(zhì)是快捷解題的基礎(chǔ).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知R是實數(shù)集,M={x|
          2
          x
          <1},N={y|y=
          x-1
          }
          ,則N∩?RM=( 。
          A、(1,2)B、[0,2]
          C、∅D、[1,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知R是實數(shù)集,實數(shù)a、b都是常數(shù),a>0,f(x)=
          a
          3
          x3+
          b
          2
          x2+x,h(x)
          是f(x)的導(dǎo)函數(shù),函數(shù)F(x)的定義域是{x|x≠0,x∈R},F(xiàn)(x)=
          h(x),x>0
          -h(x),x<0

          (I)假設(shè)h(-1)=0,且f(x)在(-∞,+∞)上是單調(diào)函數(shù),求a、b的值;
          (II)假設(shè)h(x)是偶函數(shù),m+n>0,m•n<0,證明:F(m)+F(n)>0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知R是實數(shù)集,M={x|x(2-x)<0},N={y|y=
          x-1
          }
          ,則N∩?RM=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知R是實數(shù)集,實數(shù)a、b都是常數(shù),數(shù)學(xué)公式是f(x)的導(dǎo)函數(shù),函數(shù)F(x)的定義域是數(shù)學(xué)公式
          (I)假設(shè)h(-1)=0,且f(x)在(-∞,+∞)上是單調(diào)函數(shù),求a、b的值;
          (II)假設(shè)h(x)是偶函數(shù),m+n>0,m•n<0,證明:F(m)+F(n)>0.

          查看答案和解析>>

          同步練習(xí)冊答案