日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知{an}是正數(shù)組成的數(shù)列,a1=1,且點()(nN*)在函數(shù)y=x2+1的圖象上.

          (Ⅰ)求數(shù)列{an}的通項公式;

          (Ⅱ)若列數(shù){bn}滿足b1=1,bn+1=bn+,求證:bn       ·bn+2。

          本小題主要考查等差數(shù)列、等比數(shù)列等基本知識,考查轉化與化歸思想,考查推理與運算能力.

          解法一:

          (Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,

          所以數(shù)列{an}是以1為首項,公差為1的等差數(shù)列.

          an=1+(a-1)×1=n.

          (Ⅱ)由(Ⅰ)知:an=n從而bn+1-bn=2n.

          bn=(bn-bn-1)+(bn-1-bn-2)+­­­­­­­­­­­…+(b2-b1)+b1

          =2n-1+2n-2+…+2+1

          =2n-1.

          因為bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2

          =(22n+2-2n+2-2n+1)-(22n+2-2·2n+1-1)

          =-5·2n+4·2n

          =-2n<0,

          所以bn·bn+2<b,

          解法二:

          (Ⅰ)同解法一.

          (Ⅱ)因為b2=1,

          bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b

                      =2n+1·bn+1-2n·bn+1-2n·2n+1

          =2nbn+1-2n+1

          =2nbn+2n-2n+1

          =2nbn-2n

          =…

          =2nb1-2)

          =-2n〈0,

          所以bn·bn+2b2n+1

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2012•眉山二模)設a1≤a2≤…≤an,b1≤b2≤…≤bn為兩組實數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,我們稱S=a1c1+a2c2+a3c3+…+ancn為兩組實數(shù)的亂序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1為反序和,S2=a1b1+a2b2+a3b3+…+anbn 為順序和.根據(jù)排序原理有:S1≤S≤S2即:反序和≤亂序和≤順序和.給出下列命題:
          ①數(shù)組(2,4,6,8)和(1,3,5,7)的反序和為60;
          ②若A=
          x
          2
          1
          +
          x
          2
          2
          +…+
          x
          2
          n
          ,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正數(shù),則A≤B;
          ③設正實數(shù)a1,a2,a3的任一排列為c1,c2,c3
          a1
          c1
          +
          a2
          c2
          +
          a3
          c3
          的最小值為3;
          ④已知正實數(shù)x1,x2,…,xn滿足x1+x2+…+xn=P,P為定值,則F=
          x
          2
          1
          x2
          +
          x
          2
          2
          x3
          +…+
          x
          2
          n-1
          xn
          +
          x
          2
          n
          x1
          的最小值為
          P
          2

          其中所有正確命題的序號為
          ①③
          ①③
          .(把所有正確命題的序號都填上)

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年四川省眉山市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

          設a1≤a2≤…≤an,b1≤b2≤…≤bn為兩組實數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,我們稱S=a1c1+a2c2+a3c3+…+ancn為兩組實數(shù)的亂序和,S1=a1bn+a2bn-1+a3bn-2+…+anb1為反序和,S2=a1b1+a2b2+a3b3+…+anbn 為順序和.根據(jù)排序原理有:S1≤S≤S2即:反序和≤亂序和≤順序和.給出下列命題:
          ①數(shù)組(2,4,6,8)和(1,3,5,7)的反序和為60;
          ②若A=++…+,B=x1x2+x2x3+…+xn-1xn+xnx1其中x1,x2,…xn都是正數(shù),則A≤B;
          ③設正實數(shù)a1,a2,a3的任一排列為c1,c2,c3++的最小值為3;
          ④已知正實數(shù)x1,x2,…,xn滿足x1+x2+…+xn=P,P為定值,則F=++…++的最小值為
          其中所有正確命題的序號為    .(把所有正確命題的序號都填上)

          查看答案和解析>>

          同步練習冊答案