日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=4x-k(x2+2clnx)(c>1,k∈R)有一個(gè)極值點(diǎn)是1.
          (I)討論函數(shù)f(x)的單調(diào)性;
          (II)當(dāng)c>1時(shí),記f(x)的極大值為M(c),極小值為N(c),對(duì)于t∈R,問函數(shù)是否存在零點(diǎn)?若存在,請(qǐng)確定零點(diǎn)個(gè)數(shù);若不存在,請(qǐng)說明理由.
          【答案】分析:(I)由已知中函數(shù)f(x)=4x-k(x2+2clnx)(c>1,k∈R)有一個(gè)極值點(diǎn)是1.根據(jù)函數(shù)在某點(diǎn)取得極值的條件,可得1是導(dǎo)函數(shù)f′(x)=4-k(2x+)的一個(gè)根,由此求出函數(shù)的另一個(gè)極值點(diǎn)后,即可討論得出函數(shù)的單調(diào)性.
          (II)由(I)的結(jié)論,我們可得f(x)在x=c時(shí)取極大值,在x=1時(shí)取極小值,即=f(c)=4c-k(c2+2clnc),N=f(1)=4-k,構(gòu)造函數(shù)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性可以比較 的大小,從而得出函數(shù)是否存在零點(diǎn).
          解答:解:(I)由已知中k≠0
          ∵f(x)=4x-k(x2+2clnx)(c>1,k∈R)
          ∴f′(x)=4-k(2x+)=
          ∵函數(shù)f(x)=有一個(gè)極值點(diǎn)是1.
          ∴f′(1)=0
          ∴c=
          令f′(x)=0,即-2kx2-2ck+4x=0,即2kx2-4x+2ck=0
          ∵此方程的一個(gè)根為1,
          ∴另一個(gè)根為c
          ∵c>1,即0<k<1
          ∴函數(shù)f(x)在(1,c)上為增函數(shù),在(0,1),(c,+∞)上為減函數(shù)
          (II)由(I)知f(x)在x=c時(shí)取極大值,在x=1時(shí)取極小值
          ∴M=f(c)=4c-k(c2+2clnc),N=f(1)=4-k,其中


          令g(c)=c2-1-2clnc,則g′(c)=2c-(2lnc+2)=2(c-1-lnc)
          再令h(c)=c-1-lnc,則h′(c)=1-=
          ∵c>1,∴h′(c)>0
          ∴函數(shù)h(c)在(1,+∞)上為增函數(shù)
          ∴h(c)>h(1)=0
          ∴g′(c)>0,
          ∴函數(shù)g(c)在(1,+∞)上為增函數(shù)
          ∴g(c)>g(1)=0
          >0

          ∴函數(shù)不存在零點(diǎn).
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)在某點(diǎn)取得極值的條件,用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,其中根據(jù)已知中函數(shù)的解析式,求出函數(shù)的導(dǎo)函數(shù)的解析式,并分析出函數(shù)的單調(diào)性及極值點(diǎn)等信息,是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=-
          4+
          1
          x2
          ,數(shù)列{an},點(diǎn)Pn(an,-
          1
          an+1
          )在曲線y=f(x)上(n∈N+),且a1=1,an>0.
          ( I)求數(shù)列{an}的通項(xiàng)公式;
          ( II)數(shù)列{bn}的前n項(xiàng)和為Tn且滿足bn=an2an+12,求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=-
          4-x2
          在區(qū)間M上的反函數(shù)是其本身,則M可以是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=4+ax-1(a>0且a≠1)的圖象恒過定點(diǎn)P,則P點(diǎn)的坐標(biāo)是
          (1,5)
          (1,5)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          4-x
          的定義域?yàn)锳,B={x|2x+3≥1}.
          (1)求A∩B;
          (2)設(shè)全集U=R,求?U(A∩B);
          (3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          (4-
          a
          2
          )x+4,  x≤6
          ax-5,     x>6
          (a>0,a≠1),數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是單調(diào)遞增數(shù)列,則實(shí)數(shù)a的取值范圍( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案