日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. f(x)=(n∈Z)是偶函數(shù),且y=f(x)在(0,+∞)上是減函數(shù),則n=( )
          A.1
          B.2
          C.1或2
          D.3
          【答案】分析:結(jié)合冪函數(shù)的性質(zhì)可知,若f(x)=(n∈Z)是偶函數(shù)且在(0,+∞)上是減函數(shù),結(jié)合n2-3n為整數(shù),可知,n2-3n<0,且n2-3n為偶數(shù),可求
          解答:解:∵f(x)=(n∈Z)是偶函數(shù),且n2-3n為整數(shù)
          ∴n2-3n為偶數(shù)
          又∵y=f(x)在(0,+∞)上是減函數(shù)
          由冪函數(shù)的性質(zhì)可知,n2-3n<0,即0<n<3
          ∵n∈Z,則n=1或n=2
          當(dāng)n=1時,n2-3n=-2符合題意;當(dāng)n=2時,n2-3n=-2,符合題意
          故n=1或n=2
          故選C
          點評:本題主要考查了冪函數(shù)的性質(zhì)的應(yīng)用,解答本題的關(guān)鍵是熟練掌握冪函數(shù)的性質(zhì)并能靈活應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          14、冪函數(shù)f(x)=xn(n∈Z)具有性質(zhì)f2(1)+f2(-1)=2[f(1)+f(-1)-1],判斷函數(shù)f(x)的奇偶性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (A類)定義在R上的函數(shù)y=f(x),對任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時,有f(x)>1,其中f(1)=2
          (1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
          (B類)已知定義在R上的奇函數(shù)f(x)= 
          -2x+b
          2x+1+a

          (1)求a,b的值;
          (2)若不等式-m2+(k+2)m-
          3
          2
          <f(x)<m2+2km+k+
          5
          2
          對一切實數(shù)x及m恒成立,求實數(shù)k的取值范圍;
          (3)定義:若存在一個非零常數(shù)T,使得f(x+T)=f(x)對定義域中的任何實數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時,g(x)=f(x)-x,求方程g(x)=0的所有解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          冪函數(shù)f(x)=xn(n∈Z)具有性質(zhì)f2(1)+f2(-1)=2[f(1)+f(-1)-1],判斷函數(shù)f(x)的奇偶性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          冪函數(shù)f(x)=xn(n∈Z)具有性質(zhì)f2(1)+f2(-1)=2[f(1)+f(-1)-1],判斷函數(shù)f(x)的奇偶性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (A類)定義在R上的函數(shù)y=f(x),對任意的a,b∈R,滿足f(a+b)=f(a)•f(b),當(dāng)x>0時,有f(x)>1,其中f(1)=2
          (1)求f(0)、f(-1)的值;  (2)證明y=f(x)在(0,+∞)上是增函數(shù);(3)求不等式f(x+1)<4的解集.
          (B類)已知定義在R上的奇函數(shù)f(x)= 
          -2x+b
          2x+1+a

          (1)求a,b的值;
          (2)若不等式-m2+(k+2)m-
          3
          2
          <f(x)<m2+2km+k+
          5
          2
          對一切實數(shù)x及m恒成立,求實數(shù)k的取值范圍;
          (3)定義:若存在一個非零常數(shù)T,使得f(x+T)=f(x)對定義域中的任何實數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x0是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時,g(x)=f(x)-x,求方程g(x)=0的所有解.

          查看答案和解析>>

          同步練習(xí)冊答案