日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,數(shù)學(xué)公式,數(shù)學(xué)公式其中Sn表示數(shù)列的前n項(xiàng)和.
          (Ⅰ)分別求a2,a3,a4的值;
          (Ⅱ)求數(shù)列{an}的通項(xiàng)公式an的表達(dá)式,并予以證明.

          (本小題滿分14分)
          解:(Ⅰ)因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/65319.png' />,,
          所以n=2時,
          n=3時===,,
          n=4時==,…(3分)
          (Ⅱ)由(Ⅰ)猜想數(shù)列{an}的通項(xiàng)公式…(5分)
          以下用數(shù)學(xué)歸納法證明:①n=1時,,命題成立;
          ②假設(shè)n=k(k≥1)時成立,即成立…(7分)
          由已知
          推得:
          成立…(9分)
          那么,當(dāng)n=k+1時,=
          =
          則n=k+1時,也成立.…(14分)
          綜上可知,對任意n∈N,成立.
          分析:(Ⅰ)通過關(guān)系式,利用n=2,3,4,即可求a2,a3,a4的值;
          (Ⅱ)通過觀察a1,a2,a3,a4的值,猜想求數(shù)列{an}的通項(xiàng)公式an的表達(dá)式,然后利用數(shù)學(xué)歸納法證明.
          點(diǎn)評:本題是中檔題,考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列的項(xiàng)的求法,數(shù)學(xué)歸納法的證明方法,注意證明中必須利用假設(shè),考查計(jì)算能力,邏輯推理能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          1、已知點(diǎn)(n,an)(n∈N*)都在直線3x-y-24=0上,那么在數(shù)列an中有a7+a9=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,a1=2,an+1=an+ln(1+
          1n
          )
          ,則an=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          14、在數(shù)列{an}中,若a1=1,an+1=an+2(n≥1),則該數(shù)列的通項(xiàng)an=
          2n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中a1=
          1
          2
          a2=
          1
          5
          ,且an+1=
          (n-1)an
          n-2an
          (n≥2)

          (1)求a3、a4,并求出數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn=
          anan+1
          an
          +
          an+1
          ,求證:對?n∈N*,都有b1+b2+…bn
          3n-1
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          一般地,在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對任意正整數(shù)m均成立,那么就稱{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設(shè)S2009為其前2009項(xiàng)的和,則當(dāng)數(shù)列{xn}的周期為3時,S2009=
          1339+a
          1339+a

          查看答案和解析>>

          同步練習(xí)冊答案